Skip to main content
This site and Lume package is currently under development and may not be stable.

Line chart Since 0.1.0

Multiple series shown as a line graph.

Usage

To use this component in a Nunjucks template you would add the following (assumes you've loaded OI Lume Viz into componentNamespace: 'oi'):

{% comp 'oi.chart.line', { "config": config } %}{% endcomp %}

where config is replaced by an object that contains some or all of these variables:

  • data - Either a reference to a CSV file in the Lume site or an array of rows with named attributes.
  • columns - As with many of the visualisation types you can optionally add virtual columns.
  • colours - Define some visualisation-specific named colours.
  • width - Set a specific width for the visualisation.
  • height - Set a specific height for the visualisation.
  • axis - Define the x (horizontal) axis.
  • legend - Define the legend.
  • series - An ordered array of series. Each one is of the form:
    • title - The display name of the series.
    • x - The title of the column to use for the horizontal axis value.
    • y - The title of the column to use for the vertical axis value.
    • colour - The hex code to use to colour this series.
    • tooltip - Either a string, template string, or the column heading to use to build a tooltip.
    • points - Properties of the points:
      • size - The size of the point.
      • marker - One of circle, triangle, square, diamond, pentagon, hexagon, octagon, line, or cross.
      • rotate - How much to rotate the marker around its centre by, in degrees.
    • line - Properties of the line that joins the points:
      • curvature - The amount of curvature to apply to the line (1 = maximum, 0 = none.
      • stroke-dasharray - Define a stroke-dasharray for the stroke e.g. "6 2".
      • stroke-width - Define a width for the stroke.
      • stroke-linecap - The stroke-linecap
    • where - Limit the rows to include
  • attribution - Add a line of attribution text under the visualisation.

Examples

  1. Basic
  2. Auto-generated grid
  3. Explicitly defined grid
  4. Category-based data
  5. Custom icons
  6. Gaps in series
  7. Limiting a series to specific rows

1. Basic§

Embeddable version

This is a basic line chart with one data series showing unemployment over time for 16-17 year olds (data from the ONS's A01: Summary of labour market statistics). The graph is auto-scaled to the data using axis → x → tick→ pacing and axis → y → tick→ spacing. The tick marks for each axis are defined using those same properties and styled with axis → x → grid. To calculate the x values we take the Date column (e.g. "Mar-May 1992"), extract the end of the month range, and then convert the result to a decimal year.

16-17
19972002200720122017182328333816-17 1992.3306010928961: 18.0600528516-17 1992.4153005464482: 18.8464332316-17 1992.4972677595629: 19.6350955516-17 1992.5819672131147: 19.1589618216-17 1992.6666666666667: 18.3999379216-17 1992.7486338797814: 17.7000536616-17 1992.8333333333333: 18.0119551216-17 1992.9153005464482: 18.9435365416-17 1993: 19.8071882816-17 1993.0849315068492: 20.0455722716-17 1993.1616438356164: 19.6242327316-17 1993.2465753424658: 19.5838433716-17 1993.3287671232877: 19.1872078916-17 1993.4136986301369: 19.3206987816-17 1993.495890410959: 19.2141024416-17 1993.5808219178082: 20.0634998216-17 1993.6657534246576: 20.160176116-17 1993.7479452054795: 20.6413623916-17 1993.8328767123287: 19.7237544216-17 1993.9150684931508: 20.2397389116-17 1994: 19.9620240716-17 1994.0849315068492: 19.6474103716-17 1994.1616438356164: 19.6581605116-17 1994.2465753424658: 19.7797112716-17 1994.3287671232877: 19.9636000116-17 1994.4136986301369: 19.2103822416-17 1994.495890410959: 19.367014216-17 1994.5808219178082: 19.365816416-17 1994.6657534246576: 19.9103055516-17 1994.7479452054795: 19.5328270916-17 1994.8328767123287: 19.1962021316-17 1994.9150684931508: 18.05251416-17 1995: 18.0319390716-17 1995.0849315068492: 18.8643175916-17 1995.1616438356164: 19.020535516-17 1995.2465753424658: 19.8465882316-17 1995.3287671232877: 19.3657818116-17 1995.4136986301369: 19.7164310516-17 1995.495890410959: 19.1563606216-17 1995.5808219178082: 18.7585419316-17 1995.6657534246576: 18.6457437416-17 1995.7479452054795: 18.6822278916-17 1995.8328767123287: 19.2373417516-17 1995.9150684931508: 18.5722641216-17 1996: 18.6443329216-17 1996.0846994535518: 18.3774064216-17 1996.1639344262296: 18.4427678616-17 1996.2486338797814: 19.7233518416-17 1996.3306010928961: 20.1416228916-17 1996.4153005464482: 20.1802105416-17 1996.4972677595629: 19.8310624316-17 1996.5819672131147: 19.7944609816-17 1996.6666666666667: 20.3999959216-17 1996.7486338797814: 21.2814050716-17 1996.8333333333333: 21.0145746816-17 1996.9153005464482: 20.7268533616-17 1997: 20.6411561116-17 1997.0849315068492: 19.9201443116-17 1997.1616438356164: 19.6992420616-17 1997.2465753424658: 18.9984338316-17 1997.3287671232877: 19.5213080516-17 1997.4136986301369: 19.975272216-17 1997.495890410959: 20.3123095116-17 1997.5808219178082: 19.8266512216-17 1997.6657534246576: 18.1955457416-17 1997.7479452054795: 18.2398805216-17 1997.8328767123287: 18.7374682116-17 1997.9150684931508: 18.6862508716-17 1998: 19.3304806816-17 1998.0849315068492: 19.9054292516-17 1998.1616438356164: 19.8334157516-17 1998.2465753424658: 19.6348443316-17 1998.3287671232877: 18.7832296816-17 1998.4136986301369: 20.0882765816-17 1998.495890410959: 20.0539718116-17 1998.5808219178082: 20.7128229716-17 1998.6657534246576: 19.3335106516-17 1998.7479452054795: 19.3387885716-17 1998.8328767123287: 19.5737239216-17 1998.9150684931508: 20.026029316-17 1999: 20.648766416-17 1999.0849315068492: 20.8430107116-17 1999.1616438356164: 20.4171050216-17 1999.2465753424658: 20.7544221616-17 1999.3287671232877: 20.0618736216-17 1999.4136986301369: 20.5558296616-17 1999.495890410959: 20.3275202316-17 1999.5808219178082: 21.1277852716-17 1999.6657534246576: 20.1831320616-17 1999.7479452054795: 19.9047348216-17 1999.8328767123287: 19.4941238216-17 1999.9150684931508: 20.1470211716-17 2000: 20.0569597216-17 2000.0846994535518: 20.7089652416-17 2000.1639344262296: 20.7267492216-17 2000.2486338797814: 21.626300816-17 2000.3306010928961: 20.8631972116-17 2000.4153005464482: 19.7313822116-17 2000.4972677595629: 18.5866696216-17 2000.5819672131147: 19.694807216-17 2000.6666666666667: 20.8826769916-17 2000.7486338797814: 21.2801624216-17 2000.8333333333333: 20.8481207916-17 2000.9153005464482: 19.7563129516-17 2001: 19.2185111116-17 2001.0849315068492: 19.5567779116-17 2001.1616438356164: 18.7583586316-17 2001.2465753424658: 18.0591485516-17 2001.3287671232877: 17.9698558716-17 2001.4136986301369: 18.5862925116-17 2001.495890410959: 19.5522715916-17 2001.5808219178082: 19.8087273116-17 2001.6657534246576: 19.7545727116-17 2001.7479452054795: 19.5376634216-17 2001.8328767123287: 19.4897162116-17 2001.9150684931508: 19.1234923616-17 2002: 19.0267365616-17 2002.0849315068492: 18.6277387116-17 2002.1616438356164: 19.0155703216-17 2002.2465753424658: 19.1401437216-17 2002.3287671232877: 20.0534858716-17 2002.4136986301369: 19.9911451216-17 2002.495890410959: 19.3471084216-17 2002.5808219178082: 19.5752974116-17 2002.6657534246576: 19.9824993916-17 2002.7479452054795: 20.3280587116-17 2002.8328767123287: 20.5350991716-17 2002.9150684931508: 21.2226871216-17 2003: 21.2234287816-17 2003.0849315068492: 21.1439407316-17 2003.1616438356164: 20.4839231516-17 2003.2465753424658: 21.0494939316-17 2003.3287671232877: 21.3974911816-17 2003.4136986301369: 21.3166349116-17 2003.495890410959: 21.0581612316-17 2003.5808219178082: 21.0171659416-17 2003.6657534246576: 20.9776005316-17 2003.7479452054795: 21.332669916-17 2003.8328767123287: 20.5922372316-17 2003.9150684931508: 20.9713884516-17 2004: 20.8124863216-17 2004.0846994535518: 21.2529189516-17 2004.1639344262296: 21.3775060616-17 2004.2486338797814: 21.9746516616-17 2004.3306010928961: 21.532904516-17 2004.4153005464482: 21.48535916-17 2004.4972677595629: 21.7186277816-17 2004.5819672131147: 21.5042362716-17 2004.6666666666667: 22.0764079916-17 2004.7486338797814: 21.0942408516-17 2004.8333333333333: 21.2012910916-17 2004.9153005464482: 20.88774716-17 2005: 21.4044604516-17 2005.0849315068492: 21.548671216-17 2005.1616438356164: 22.1481410816-17 2005.2465753424658: 21.9597103516-17 2005.3287671232877: 21.905716716-17 2005.4136986301369: 21.973059416-17 2005.495890410959: 21.7984021216-17 2005.5808219178082: 22.2659615816-17 2005.6657534246576: 22.3060126516-17 2005.7479452054795: 23.8524068816-17 2005.8328767123287: 23.8426706616-17 2005.9150684931508: 25.1287353416-17 2006: 25.5403799616-17 2006.0849315068492: 25.3821844216-17 2006.1616438356164: 24.6934348916-17 2006.2465753424658: 24.5775113416-17 2006.3287671232877: 24.6063195216-17 2006.4136986301369: 24.1411668516-17 2006.495890410959: 23.7553171216-17 2006.5808219178082: 23.4707323616-17 2006.6657534246576: 24.953094816-17 2006.7479452054795: 25.1412888316-17 2006.8328767123287: 25.1445582916-17 2006.9150684931508: 24.905261216-17 2007: 25.3471851616-17 2007.0849315068492: 26.176167616-17 2007.1616438356164: 26.2790393716-17 2007.2465753424658: 26.2232680316-17 2007.3287671232877: 26.5091930316-17 2007.4136986301369: 27.452816416-17 2007.495890410959: 28.4332089316-17 2007.5808219178082: 28.2578058616-17 2007.6657534246576: 29.1493741316-17 2007.7479452054795: 27.5624096316-17 2007.8328767123287: 26.118084316-17 2007.9150684931508: 25.0039821516-17 2008: 24.1456848716-17 2008.0846994535518: 24.2231113716-17 2008.1639344262296: 24.1748448216-17 2008.2486338797814: 25.2951687916-17 2008.3306010928961: 25.3170696216-17 2008.4153005464482: 26.1018792216-17 2008.4972677595629: 26.02235416-17 2008.5819672131147: 26.8715613116-17 2008.6666666666667: 26.4807889316-17 2008.7486338797814: 27.2047762816-17 2008.8333333333333: 27.7994724616-17 2008.9153005464482: 28.1582918416-17 2009: 28.5134928816-17 2009.0849315068492: 27.5769279916-17 2009.1616438356164: 29.1706030916-17 2009.2465753424658: 29.7486845116-17 2009.3287671232877: 31.0450661216-17 2009.4136986301369: 32.3005607916-17 2009.495890410959: 35.0754894116-17 2009.5808219178082: 34.5168346316-17 2009.6657534246576: 33.6760871416-17 2009.7479452054795: 32.6454590716-17 2009.8328767123287: 32.8679180416-17 2009.9150684931508: 32.9795685716-17 2010: 33.7491374216-17 2010.0849315068492: 34.1177502716-17 2010.1616438356164: 34.7979954616-17 2010.2465753424658: 36.474327616-17 2010.3287671232877: 36.1338375616-17 2010.4136986301369: 33.7201156516-17 2010.495890410959: 33.1712204716-17 2010.5808219178082: 32.6644037716-17 2010.6657534246576: 34.0315341616-17 2010.7479452054795: 36.1690203416-17 2010.8328767123287: 36.8628412216-17 2010.9150684931508: 37.4663761116-17 2011: 37.2200714316-17 2011.0849315068492: 37.4078741316-17 2011.1616438356164: 37.2219533416-17 2011.2465753424658: 36.5434768816-17 2011.3287671232877: 36.4257460516-17 2011.4136986301369: 37.0353567516-17 2011.495890410959: 37.4930592416-17 2011.5808219178082: 38.7038496916-17 2011.6657534246576: 40.4244140916-17 2011.7479452054795: 39.5229113816-17 2011.8328767123287: 38.5745736516-17 2011.9150684931508: 37.7157254116-17 2012: 38.9490920216-17 2012.0846994535518: 38.2088288316-17 2012.1639344262296: 37.1819635316-17 2012.2486338797814: 36.6844673816-17 2012.3306010928961: 36.0606307216-17 2012.4153005464482: 36.2270388316-17 2012.4972677595629: 36.6661164116-17 2012.5819672131147: 36.1560787916-17 2012.6666666666667: 35.3177049216-17 2012.7486338797814: 36.9535629916-17 2012.8333333333333: 37.2933065516-17 2012.9153005464482: 37.9011074516-17 2013: 37.3010002516-17 2013.0849315068492: 38.4108354116-17 2013.1616438356164: 37.4150297416-17 2013.2465753424658: 35.9392326916-17 2013.3287671232877: 37.3813035316-17 2013.4136986301369: 37.5393991416-17 2013.495890410959: 38.0516889516-17 2013.5808219178082: 36.628083716-17 2013.6657534246576: 36.6738003816-17 2013.7479452054795: 36.2621725416-17 2013.8328767123287: 36.5264693716-17 2013.9150684931508: 36.8938019816-17 2014: 36.8682496916-17 2014.0849315068492: 36.4359468516-17 2014.1616438356164: 35.9698383316-17 2014.2465753424658: 34.6984957216-17 2014.3287671232877: 34.0750198516-17 2014.4136986301369: 33.4828450516-17 2014.495890410959: 33.7076612616-17 2014.5808219178082: 33.55778616-17 2014.6657534246576: 33.1299789716-17 2014.7479452054795: 32.8353093816-17 2014.8328767123287: 32.2716854116-17 2014.9150684931508: 31.5619821616-17 2015: 30.7751751816-17 2015.0849315068492: 30.9034503316-17 2015.1616438356164: 29.49409916-17 2015.2465753424658: 29.8695099316-17 2015.3287671232877: 28.5674854316-17 2015.4136986301369: 28.5837607916-17 2015.495890410959: 28.081164816-17 2015.5808219178082: 28.1257398216-17 2015.6657534246576: 27.019805516-17 2015.7479452054795: 24.8520040416-17 2015.8328767123287: 25.6929971816-17 2015.9150684931508: 26.8274289716-17 2016: 26.903929516-17 2016.0846994535518: 25.9945806316-17 2016.1639344262296: 25.5560660516-17 2016.2486338797814: 27.2046836316-17 2016.3306010928961: 28.2765953516-17 2016.4153005464482: 28.8290076116-17 2016.4972677595629: 29.0623810416-17 2016.5819672131147: 28.6957536916-17 2016.6666666666667: 26.7185709716-17 2016.7486338797814: 27.3535538416-17 2016.8333333333333: 25.657560216-17 2016.9153005464482: 24.6288975916-17 2017: 23.0467432316-17 2017.0849315068492: 25.1265723716-17 2017.1616438356164: 26.7002147516-17 2017.2465753424658: 26.5135488616-17 2017.3287671232877: 25.3677541116-17 2017.4136986301369: 24.6783325716-17 2017.495890410959: 24.0861009516-17 2017.5808219178082: 23.4875781816-17 2017.6657534246576: 23.4605379716-17 2017.7479452054795: 24.144727916-17 2017.8328767123287: 25.7440672116-17 2017.9150684931508: 26.5883904816-17 2018: 27.1326903716-17 2018.0849315068492: 27.0177982916-17 2018.1616438356164: 26.4460582516-17 2018.2465753424658: 24.7173800116-17 2018.3287671232877: 23.3630539916-17 2018.4136986301369: 22.2628842816-17 2018.495890410959: 22.3563903216-17 2018.5808219178082: 21.8770935616-17 2018.6657534246576: 21.2942928316-17 2018.7479452054795: 22.8367132316-17 2018.8328767123287: 24.8262866616-17 2018.9150684931508: 24.2590943616-17 2019: 22.1719539416-17 2019.0849315068492: 21.0034889716-17 2019.1616438356164: 19.1970681416-17 2019.2465753424658: 20.3176361616-17 2019.3287671232877: 19.5564926216-17 2019.4136986301369: 19.3553733116-17 2019.495890410959: 19.2767940416-17 2019.5808219178082: 20.2526384516-17 2019.6657534246576: 20.9612630416-17 2019.7479452054795: 19.9955693716-17 2019.8328767123287: 21.3832169816-17 2019.9150684931508: 22.5121212416-17 2020: 22.1430607816-17 2020.0846994535518: 23.802524116-17 2020.1639344262296: 24.4523680516-17 2020.2486338797814: 25.9839092216-17 2020.3306010928961: 24.4874445716-17 2020.4153005464482: 25.60143316-17 2020.4972677595629: 24.1381315116-17 2020.5819672131147: 24.6053759916-17 2020.6666666666667: 26.3439509416-17 2020.7486338797814: 28.9251421116-17 2020.8333333333333: 26.4417507416-17 2020.9153005464482: 26.7471877316-17 2021: 29.0003238716-17 2021.0849315068492: 31.9703198916-17 2021.1616438356164: 29.8628692216-17 2021.2465753424658: 32.2880934216-17 2021.3287671232877: 34.1442893816-17 2021.4136986301369: 33.4109860216-17 2021.495890410959: 30.1652477816-17 2021.5808219178082: 24.8023911316-17 2021.6657534246576: 22.5087733516-17 2021.7479452054795: 22.1765969416-17 2021.8328767123287: 22.1364507716-17 2021.9150684931508: 20.619908116-17 2022: 22.3498113216-17 2022.0849315068492: 21.9405890116-17 2022.1616438356164: 22.6032818816-17 2022.2465753424658: 22.388057816-17 2022.3287671232877: 21.34111192

This example was made with config:

YAML
data: test.data.unemploymentByAge
columns:
  - name: decimal_year
    template: '{{ Date | strptime("-%b %Y") | decimalYear() }}'
series:
  - title: 16-17
    x: decimal_year
    y: 16-17→rate (%)1
    colour: '#e52e36'
JSON
{
	"data": "test.data.unemploymentByAge",
	"columns": [{
			"name": "decimal_year",
			"template": "{{ Date | strptime(\"-%b %Y\") | decimalYear() }}"
		}],
	"series": [{
			"title": "16-17",
			"x": "decimal_year",
			"y": "16-17→rate (%)1",
			"colour": "#e52e36"
		}]
}

2. Auto-generated grid§

Embeddable version

This is a basic line chart showing the same data as above. In this example we have auto-scaled each axis to the data using axis → x → tick → spacing and axis → y → tick → spacing. The tick → spacing values are used to auto generate tick marks which are styled with axis → x → grid and axis → y → grid.

16-17
199019952000200520102015202020251520253035404516-17 1992.3306010928961: 18.0600528516-17 1992.4153005464482: 18.8464332316-17 1992.4972677595629: 19.6350955516-17 1992.5819672131147: 19.1589618216-17 1992.6666666666667: 18.3999379216-17 1992.7486338797814: 17.7000536616-17 1992.8333333333333: 18.0119551216-17 1992.9153005464482: 18.9435365416-17 1993: 19.8071882816-17 1993.0849315068492: 20.0455722716-17 1993.1616438356164: 19.6242327316-17 1993.2465753424658: 19.5838433716-17 1993.3287671232877: 19.1872078916-17 1993.4136986301369: 19.3206987816-17 1993.495890410959: 19.2141024416-17 1993.5808219178082: 20.0634998216-17 1993.6657534246576: 20.160176116-17 1993.7479452054795: 20.6413623916-17 1993.8328767123287: 19.7237544216-17 1993.9150684931508: 20.2397389116-17 1994: 19.9620240716-17 1994.0849315068492: 19.6474103716-17 1994.1616438356164: 19.6581605116-17 1994.2465753424658: 19.7797112716-17 1994.3287671232877: 19.9636000116-17 1994.4136986301369: 19.2103822416-17 1994.495890410959: 19.367014216-17 1994.5808219178082: 19.365816416-17 1994.6657534246576: 19.9103055516-17 1994.7479452054795: 19.5328270916-17 1994.8328767123287: 19.1962021316-17 1994.9150684931508: 18.05251416-17 1995: 18.0319390716-17 1995.0849315068492: 18.8643175916-17 1995.1616438356164: 19.020535516-17 1995.2465753424658: 19.8465882316-17 1995.3287671232877: 19.3657818116-17 1995.4136986301369: 19.7164310516-17 1995.495890410959: 19.1563606216-17 1995.5808219178082: 18.7585419316-17 1995.6657534246576: 18.6457437416-17 1995.7479452054795: 18.6822278916-17 1995.8328767123287: 19.2373417516-17 1995.9150684931508: 18.5722641216-17 1996: 18.6443329216-17 1996.0846994535518: 18.3774064216-17 1996.1639344262296: 18.4427678616-17 1996.2486338797814: 19.7233518416-17 1996.3306010928961: 20.1416228916-17 1996.4153005464482: 20.1802105416-17 1996.4972677595629: 19.8310624316-17 1996.5819672131147: 19.7944609816-17 1996.6666666666667: 20.3999959216-17 1996.7486338797814: 21.2814050716-17 1996.8333333333333: 21.0145746816-17 1996.9153005464482: 20.7268533616-17 1997: 20.6411561116-17 1997.0849315068492: 19.9201443116-17 1997.1616438356164: 19.6992420616-17 1997.2465753424658: 18.9984338316-17 1997.3287671232877: 19.5213080516-17 1997.4136986301369: 19.975272216-17 1997.495890410959: 20.3123095116-17 1997.5808219178082: 19.8266512216-17 1997.6657534246576: 18.1955457416-17 1997.7479452054795: 18.2398805216-17 1997.8328767123287: 18.7374682116-17 1997.9150684931508: 18.6862508716-17 1998: 19.3304806816-17 1998.0849315068492: 19.9054292516-17 1998.1616438356164: 19.8334157516-17 1998.2465753424658: 19.6348443316-17 1998.3287671232877: 18.7832296816-17 1998.4136986301369: 20.0882765816-17 1998.495890410959: 20.0539718116-17 1998.5808219178082: 20.7128229716-17 1998.6657534246576: 19.3335106516-17 1998.7479452054795: 19.3387885716-17 1998.8328767123287: 19.5737239216-17 1998.9150684931508: 20.026029316-17 1999: 20.648766416-17 1999.0849315068492: 20.8430107116-17 1999.1616438356164: 20.4171050216-17 1999.2465753424658: 20.7544221616-17 1999.3287671232877: 20.0618736216-17 1999.4136986301369: 20.5558296616-17 1999.495890410959: 20.3275202316-17 1999.5808219178082: 21.1277852716-17 1999.6657534246576: 20.1831320616-17 1999.7479452054795: 19.9047348216-17 1999.8328767123287: 19.4941238216-17 1999.9150684931508: 20.1470211716-17 2000: 20.0569597216-17 2000.0846994535518: 20.7089652416-17 2000.1639344262296: 20.7267492216-17 2000.2486338797814: 21.626300816-17 2000.3306010928961: 20.8631972116-17 2000.4153005464482: 19.7313822116-17 2000.4972677595629: 18.5866696216-17 2000.5819672131147: 19.694807216-17 2000.6666666666667: 20.8826769916-17 2000.7486338797814: 21.2801624216-17 2000.8333333333333: 20.8481207916-17 2000.9153005464482: 19.7563129516-17 2001: 19.2185111116-17 2001.0849315068492: 19.5567779116-17 2001.1616438356164: 18.7583586316-17 2001.2465753424658: 18.0591485516-17 2001.3287671232877: 17.9698558716-17 2001.4136986301369: 18.5862925116-17 2001.495890410959: 19.5522715916-17 2001.5808219178082: 19.8087273116-17 2001.6657534246576: 19.7545727116-17 2001.7479452054795: 19.5376634216-17 2001.8328767123287: 19.4897162116-17 2001.9150684931508: 19.1234923616-17 2002: 19.0267365616-17 2002.0849315068492: 18.6277387116-17 2002.1616438356164: 19.0155703216-17 2002.2465753424658: 19.1401437216-17 2002.3287671232877: 20.0534858716-17 2002.4136986301369: 19.9911451216-17 2002.495890410959: 19.3471084216-17 2002.5808219178082: 19.5752974116-17 2002.6657534246576: 19.9824993916-17 2002.7479452054795: 20.3280587116-17 2002.8328767123287: 20.5350991716-17 2002.9150684931508: 21.2226871216-17 2003: 21.2234287816-17 2003.0849315068492: 21.1439407316-17 2003.1616438356164: 20.4839231516-17 2003.2465753424658: 21.0494939316-17 2003.3287671232877: 21.3974911816-17 2003.4136986301369: 21.3166349116-17 2003.495890410959: 21.0581612316-17 2003.5808219178082: 21.0171659416-17 2003.6657534246576: 20.9776005316-17 2003.7479452054795: 21.332669916-17 2003.8328767123287: 20.5922372316-17 2003.9150684931508: 20.9713884516-17 2004: 20.8124863216-17 2004.0846994535518: 21.2529189516-17 2004.1639344262296: 21.3775060616-17 2004.2486338797814: 21.9746516616-17 2004.3306010928961: 21.532904516-17 2004.4153005464482: 21.48535916-17 2004.4972677595629: 21.7186277816-17 2004.5819672131147: 21.5042362716-17 2004.6666666666667: 22.0764079916-17 2004.7486338797814: 21.0942408516-17 2004.8333333333333: 21.2012910916-17 2004.9153005464482: 20.88774716-17 2005: 21.4044604516-17 2005.0849315068492: 21.548671216-17 2005.1616438356164: 22.1481410816-17 2005.2465753424658: 21.9597103516-17 2005.3287671232877: 21.905716716-17 2005.4136986301369: 21.973059416-17 2005.495890410959: 21.7984021216-17 2005.5808219178082: 22.2659615816-17 2005.6657534246576: 22.3060126516-17 2005.7479452054795: 23.8524068816-17 2005.8328767123287: 23.8426706616-17 2005.9150684931508: 25.1287353416-17 2006: 25.5403799616-17 2006.0849315068492: 25.3821844216-17 2006.1616438356164: 24.6934348916-17 2006.2465753424658: 24.5775113416-17 2006.3287671232877: 24.6063195216-17 2006.4136986301369: 24.1411668516-17 2006.495890410959: 23.7553171216-17 2006.5808219178082: 23.4707323616-17 2006.6657534246576: 24.953094816-17 2006.7479452054795: 25.1412888316-17 2006.8328767123287: 25.1445582916-17 2006.9150684931508: 24.905261216-17 2007: 25.3471851616-17 2007.0849315068492: 26.176167616-17 2007.1616438356164: 26.2790393716-17 2007.2465753424658: 26.2232680316-17 2007.3287671232877: 26.5091930316-17 2007.4136986301369: 27.452816416-17 2007.495890410959: 28.4332089316-17 2007.5808219178082: 28.2578058616-17 2007.6657534246576: 29.1493741316-17 2007.7479452054795: 27.5624096316-17 2007.8328767123287: 26.118084316-17 2007.9150684931508: 25.0039821516-17 2008: 24.1456848716-17 2008.0846994535518: 24.2231113716-17 2008.1639344262296: 24.1748448216-17 2008.2486338797814: 25.2951687916-17 2008.3306010928961: 25.3170696216-17 2008.4153005464482: 26.1018792216-17 2008.4972677595629: 26.02235416-17 2008.5819672131147: 26.8715613116-17 2008.6666666666667: 26.4807889316-17 2008.7486338797814: 27.2047762816-17 2008.8333333333333: 27.7994724616-17 2008.9153005464482: 28.1582918416-17 2009: 28.5134928816-17 2009.0849315068492: 27.5769279916-17 2009.1616438356164: 29.1706030916-17 2009.2465753424658: 29.7486845116-17 2009.3287671232877: 31.0450661216-17 2009.4136986301369: 32.3005607916-17 2009.495890410959: 35.0754894116-17 2009.5808219178082: 34.5168346316-17 2009.6657534246576: 33.6760871416-17 2009.7479452054795: 32.6454590716-17 2009.8328767123287: 32.8679180416-17 2009.9150684931508: 32.9795685716-17 2010: 33.7491374216-17 2010.0849315068492: 34.1177502716-17 2010.1616438356164: 34.7979954616-17 2010.2465753424658: 36.474327616-17 2010.3287671232877: 36.1338375616-17 2010.4136986301369: 33.7201156516-17 2010.495890410959: 33.1712204716-17 2010.5808219178082: 32.6644037716-17 2010.6657534246576: 34.0315341616-17 2010.7479452054795: 36.1690203416-17 2010.8328767123287: 36.8628412216-17 2010.9150684931508: 37.4663761116-17 2011: 37.2200714316-17 2011.0849315068492: 37.4078741316-17 2011.1616438356164: 37.2219533416-17 2011.2465753424658: 36.5434768816-17 2011.3287671232877: 36.4257460516-17 2011.4136986301369: 37.0353567516-17 2011.495890410959: 37.4930592416-17 2011.5808219178082: 38.7038496916-17 2011.6657534246576: 40.4244140916-17 2011.7479452054795: 39.5229113816-17 2011.8328767123287: 38.5745736516-17 2011.9150684931508: 37.7157254116-17 2012: 38.9490920216-17 2012.0846994535518: 38.2088288316-17 2012.1639344262296: 37.1819635316-17 2012.2486338797814: 36.6844673816-17 2012.3306010928961: 36.0606307216-17 2012.4153005464482: 36.2270388316-17 2012.4972677595629: 36.6661164116-17 2012.5819672131147: 36.1560787916-17 2012.6666666666667: 35.3177049216-17 2012.7486338797814: 36.9535629916-17 2012.8333333333333: 37.2933065516-17 2012.9153005464482: 37.9011074516-17 2013: 37.3010002516-17 2013.0849315068492: 38.4108354116-17 2013.1616438356164: 37.4150297416-17 2013.2465753424658: 35.9392326916-17 2013.3287671232877: 37.3813035316-17 2013.4136986301369: 37.5393991416-17 2013.495890410959: 38.0516889516-17 2013.5808219178082: 36.628083716-17 2013.6657534246576: 36.6738003816-17 2013.7479452054795: 36.2621725416-17 2013.8328767123287: 36.5264693716-17 2013.9150684931508: 36.8938019816-17 2014: 36.8682496916-17 2014.0849315068492: 36.4359468516-17 2014.1616438356164: 35.9698383316-17 2014.2465753424658: 34.6984957216-17 2014.3287671232877: 34.0750198516-17 2014.4136986301369: 33.4828450516-17 2014.495890410959: 33.7076612616-17 2014.5808219178082: 33.55778616-17 2014.6657534246576: 33.1299789716-17 2014.7479452054795: 32.8353093816-17 2014.8328767123287: 32.2716854116-17 2014.9150684931508: 31.5619821616-17 2015: 30.7751751816-17 2015.0849315068492: 30.9034503316-17 2015.1616438356164: 29.49409916-17 2015.2465753424658: 29.8695099316-17 2015.3287671232877: 28.5674854316-17 2015.4136986301369: 28.5837607916-17 2015.495890410959: 28.081164816-17 2015.5808219178082: 28.1257398216-17 2015.6657534246576: 27.019805516-17 2015.7479452054795: 24.8520040416-17 2015.8328767123287: 25.6929971816-17 2015.9150684931508: 26.8274289716-17 2016: 26.903929516-17 2016.0846994535518: 25.9945806316-17 2016.1639344262296: 25.5560660516-17 2016.2486338797814: 27.2046836316-17 2016.3306010928961: 28.2765953516-17 2016.4153005464482: 28.8290076116-17 2016.4972677595629: 29.0623810416-17 2016.5819672131147: 28.6957536916-17 2016.6666666666667: 26.7185709716-17 2016.7486338797814: 27.3535538416-17 2016.8333333333333: 25.657560216-17 2016.9153005464482: 24.6288975916-17 2017: 23.0467432316-17 2017.0849315068492: 25.1265723716-17 2017.1616438356164: 26.7002147516-17 2017.2465753424658: 26.5135488616-17 2017.3287671232877: 25.3677541116-17 2017.4136986301369: 24.6783325716-17 2017.495890410959: 24.0861009516-17 2017.5808219178082: 23.4875781816-17 2017.6657534246576: 23.4605379716-17 2017.7479452054795: 24.144727916-17 2017.8328767123287: 25.7440672116-17 2017.9150684931508: 26.5883904816-17 2018: 27.1326903716-17 2018.0849315068492: 27.0177982916-17 2018.1616438356164: 26.4460582516-17 2018.2465753424658: 24.7173800116-17 2018.3287671232877: 23.3630539916-17 2018.4136986301369: 22.2628842816-17 2018.495890410959: 22.3563903216-17 2018.5808219178082: 21.8770935616-17 2018.6657534246576: 21.2942928316-17 2018.7479452054795: 22.8367132316-17 2018.8328767123287: 24.8262866616-17 2018.9150684931508: 24.2590943616-17 2019: 22.1719539416-17 2019.0849315068492: 21.0034889716-17 2019.1616438356164: 19.1970681416-17 2019.2465753424658: 20.3176361616-17 2019.3287671232877: 19.5564926216-17 2019.4136986301369: 19.3553733116-17 2019.495890410959: 19.2767940416-17 2019.5808219178082: 20.2526384516-17 2019.6657534246576: 20.9612630416-17 2019.7479452054795: 19.9955693716-17 2019.8328767123287: 21.3832169816-17 2019.9150684931508: 22.5121212416-17 2020: 22.1430607816-17 2020.0846994535518: 23.802524116-17 2020.1639344262296: 24.4523680516-17 2020.2486338797814: 25.9839092216-17 2020.3306010928961: 24.4874445716-17 2020.4153005464482: 25.60143316-17 2020.4972677595629: 24.1381315116-17 2020.5819672131147: 24.6053759916-17 2020.6666666666667: 26.3439509416-17 2020.7486338797814: 28.9251421116-17 2020.8333333333333: 26.4417507416-17 2020.9153005464482: 26.7471877316-17 2021: 29.0003238716-17 2021.0849315068492: 31.9703198916-17 2021.1616438356164: 29.8628692216-17 2021.2465753424658: 32.2880934216-17 2021.3287671232877: 34.1442893816-17 2021.4136986301369: 33.4109860216-17 2021.495890410959: 30.1652477816-17 2021.5808219178082: 24.8023911316-17 2021.6657534246576: 22.5087733516-17 2021.7479452054795: 22.1765969416-17 2021.8328767123287: 22.1364507716-17 2021.9150684931508: 20.619908116-17 2022: 22.3498113216-17 2022.0849315068492: 21.9405890116-17 2022.1616438356164: 22.6032818816-17 2022.2465753424658: 22.388057816-17 2022.3287671232877: 21.34111192

This example was made with config:

YAML
data: test.data.unemploymentByAge
columns:
  - name: decimal_year
    template: '{{ Date | strptime("-%b %Y") | decimalYear() }}'
axis:
  x:
    grid:
      show: true
    tick:
      spacing: 5
  'y':
    grid:
      show: true
    tick:
      spacing: 5
series:
  - title: 16-17
    x: decimal_year
    y: 16-17→rate (%)1
    colour: '#e52e36'
JSON
{
	"data": "test.data.unemploymentByAge",
	"columns": [{
			"name": "decimal_year",
			"template": "{{ Date | strptime(\"-%b %Y\") | decimalYear() }}"
		}],
	"axis": {
		"x": {
			"grid": {
				"show": true
			},
			"tick": {
				"spacing": 5
			}
		},
		"y": {
			"grid": {
				"show": true
			},
			"tick": {
				"spacing": 5
			}
		}
	},
	"series": [{
			"title": "16-17",
			"x": "decimal_year",
			"y": "16-17→rate (%)1",
			"colour": "#e52e36"
		}]
}

3. Explicitly defined grid§

Embeddable version

This more complicated chart shows four different age groups from A01: Summary of labour market statistics. We define titles for each axis. The x-axis range is explicitly limited to the years 2000 to 2022.5 with tick marks set every 2 years but only showing labels on the decades. The tickSize is defined per tick. The vertical lines (associated with ticks on the x-axis) have stroke-dasharray set to make them dashed and a tick → size set for the axis rather than for each tick. We can customise the tooltip for each series by providing a column/virtual column in the data or a string template. We also create an interactive legend.

50-64
25-49
18-24
16-17
Year200020102020Unemployment0%10%20%30%40%Age: 16-17
Nov-Jan 2000: 20.1%
Age: 16-17
Dec-Feb 2000: 20.7%
Age: 16-17
Jan-Mar 2000: 20.7%
Age: 16-17
Feb-Apr 2000: 21.6%
Age: 16-17
Mar-May 2000: 20.9%
Age: 16-17
Apr-Jun 2000: 19.7%
Age: 16-17
May-Jul 2000: 18.6%
Age: 16-17
Jun-Aug 2000: 19.7%
Age: 16-17
Jul-Sep 2000: 20.9%
Age: 16-17
Aug-Oct 2000: 21.3%
Age: 16-17
Sep-Nov 2000: 20.8%
Age: 16-17
Oct-Dec 2000: 19.8%
Age: 16-17
Nov-Jan 2001: 19.2%
Age: 16-17
Dec-Feb 2001: 19.6%
Age: 16-17
Jan-Mar 2001: 18.8%
Age: 16-17
Feb-Apr 2001: 18.1%
Age: 16-17
Mar-May 2001: 18.0%
Age: 16-17
Apr-Jun 2001: 18.6%
Age: 16-17
May-Jul 2001: 19.6%
Age: 16-17
Jun-Aug 2001: 19.8%
Age: 16-17
Jul-Sep 2001: 19.8%
Age: 16-17
Aug-Oct 2001: 19.5%
Age: 16-17
Sep-Nov 2001: 19.5%
Age: 16-17
Oct-Dec 2001: 19.1%
Age: 16-17
Nov-Jan 2002: 19.0%
Age: 16-17
Dec-Feb 2002: 18.6%
Age: 16-17
Jan-Mar 2002: 19.0%
Age: 16-17
Feb-Apr 2002: 19.1%
Age: 16-17
Mar-May 2002: 20.1%
Age: 16-17
Apr-Jun 2002: 20.0%
Age: 16-17
May-Jul 2002: 19.3%
Age: 16-17
Jun-Aug 2002: 19.6%
Age: 16-17
Jul-Sep 2002: 20.0%
Age: 16-17
Aug-Oct 2002: 20.3%
Age: 16-17
Sep-Nov 2002: 20.5%
Age: 16-17
Oct-Dec 2002: 21.2%
Age: 16-17
Nov-Jan 2003: 21.2%
Age: 16-17
Dec-Feb 2003: 21.1%
Age: 16-17
Jan-Mar 2003: 20.5%
Age: 16-17
Feb-Apr 2003: 21.0%
Age: 16-17
Mar-May 2003: 21.4%
Age: 16-17
Apr-Jun 2003: 21.3%
Age: 16-17
May-Jul 2003: 21.1%
Age: 16-17
Jun-Aug 2003: 21.0%
Age: 16-17
Jul-Sep 2003: 21.0%
Age: 16-17
Aug-Oct 2003: 21.3%
Age: 16-17
Sep-Nov 2003: 20.6%
Age: 16-17
Oct-Dec 2003: 21.0%
Age: 16-17
Nov-Jan 2004: 20.8%
Age: 16-17
Dec-Feb 2004: 21.3%
Age: 16-17
Jan-Mar 2004: 21.4%
Age: 16-17
Feb-Apr 2004: 22.0%
Age: 16-17
Mar-May 2004: 21.5%
Age: 16-17
Apr-Jun 2004: 21.5%
Age: 16-17
May-Jul 2004: 21.7%
Age: 16-17
Jun-Aug 2004: 21.5%
Age: 16-17
Jul-Sep 2004: 22.1%
Age: 16-17
Aug-Oct 2004: 21.1%
Age: 16-17
Sep-Nov 2004: 21.2%
Age: 16-17
Oct-Dec 2004: 20.9%
Age: 16-17
Nov-Jan 2005: 21.4%
Age: 16-17
Dec-Feb 2005: 21.5%
Age: 16-17
Jan-Mar 2005: 22.1%
Age: 16-17
Feb-Apr 2005: 22.0%
Age: 16-17
Mar-May 2005: 21.9%
Age: 16-17
Apr-Jun 2005: 22.0%
Age: 16-17
May-Jul 2005: 21.8%
Age: 16-17
Jun-Aug 2005: 22.3%
Age: 16-17
Jul-Sep 2005: 22.3%
Age: 16-17
Aug-Oct 2005: 23.9%
Age: 16-17
Sep-Nov 2005: 23.8%
Age: 16-17
Oct-Dec 2005: 25.1%
Age: 16-17
Nov-Jan 2006: 25.5%
Age: 16-17
Dec-Feb 2006: 25.4%
Age: 16-17
Jan-Mar 2006: 24.7%
Age: 16-17
Feb-Apr 2006: 24.6%
Age: 16-17
Mar-May 2006: 24.6%
Age: 16-17
Apr-Jun 2006: 24.1%
Age: 16-17
May-Jul 2006: 23.8%
Age: 16-17
Jun-Aug 2006: 23.5%
Age: 16-17
Jul-Sep 2006: 25.0%
Age: 16-17
Aug-Oct 2006: 25.1%
Age: 16-17
Sep-Nov 2006: 25.1%
Age: 16-17
Oct-Dec 2006: 24.9%
Age: 16-17
Nov-Jan 2007: 25.3%
Age: 16-17
Dec-Feb 2007: 26.2%
Age: 16-17
Jan-Mar 2007: 26.3%
Age: 16-17
Feb-Apr 2007: 26.2%
Age: 16-17
Mar-May 2007: 26.5%
Age: 16-17
Apr-Jun 2007: 27.5%
Age: 16-17
May-Jul 2007: 28.4%
Age: 16-17
Jun-Aug 2007: 28.3%
Age: 16-17
Jul-Sep 2007: 29.1%
Age: 16-17
Aug-Oct 2007: 27.6%
Age: 16-17
Sep-Nov 2007: 26.1%
Age: 16-17
Oct-Dec 2007: 25.0%
Age: 16-17
Nov-Jan 2008: 24.1%
Age: 16-17
Dec-Feb 2008: 24.2%
Age: 16-17
Jan-Mar 2008: 24.2%
Age: 16-17
Feb-Apr 2008: 25.3%
Age: 16-17
Mar-May 2008: 25.3%
Age: 16-17
Apr-Jun 2008: 26.1%
Age: 16-17
May-Jul 2008: 26.0%
Age: 16-17
Jun-Aug 2008: 26.9%
Age: 16-17
Jul-Sep 2008: 26.5%
Age: 16-17
Aug-Oct 2008: 27.2%
Age: 16-17
Sep-Nov 2008: 27.8%
Age: 16-17
Oct-Dec 2008: 28.2%
Age: 16-17
Nov-Jan 2009: 28.5%
Age: 16-17
Dec-Feb 2009: 27.6%
Age: 16-17
Jan-Mar 2009: 29.2%
Age: 16-17
Feb-Apr 2009: 29.7%
Age: 16-17
Mar-May 2009: 31.0%
Age: 16-17
Apr-Jun 2009: 32.3%
Age: 16-17
May-Jul 2009: 35.1%
Age: 16-17
Jun-Aug 2009: 34.5%
Age: 16-17
Jul-Sep 2009: 33.7%
Age: 16-17
Aug-Oct 2009: 32.6%
Age: 16-17
Sep-Nov 2009: 32.9%
Age: 16-17
Oct-Dec 2009: 33.0%
Age: 16-17
Nov-Jan 2010: 33.7%
Age: 16-17
Dec-Feb 2010: 34.1%
Age: 16-17
Jan-Mar 2010: 34.8%
Age: 16-17
Feb-Apr 2010: 36.5%
Age: 16-17
Mar-May 2010: 36.1%
Age: 16-17
Apr-Jun 2010: 33.7%
Age: 16-17
May-Jul 2010: 33.2%
Age: 16-17
Jun-Aug 2010: 32.7%
Age: 16-17
Jul-Sep 2010: 34.0%
Age: 16-17
Aug-Oct 2010: 36.2%
Age: 16-17
Sep-Nov 2010: 36.9%
Age: 16-17
Oct-Dec 2010: 37.5%
Age: 16-17
Nov-Jan 2011: 37.2%
Age: 16-17
Dec-Feb 2011: 37.4%
Age: 16-17
Jan-Mar 2011: 37.2%
Age: 16-17
Feb-Apr 2011: 36.5%
Age: 16-17
Mar-May 2011: 36.4%
Age: 16-17
Apr-Jun 2011: 37.0%
Age: 16-17
May-Jul 2011: 37.5%
Age: 16-17
Jun-Aug 2011: 38.7%
Age: 16-17
Jul-Sep 2011: 40.4%
Age: 16-17
Aug-Oct 2011: 39.5%
Age: 16-17
Sep-Nov 2011: 38.6%
Age: 16-17
Oct-Dec 2011: 37.7%
Age: 16-17
Nov-Jan 2012: 38.9%
Age: 16-17
Dec-Feb 2012: 38.2%
Age: 16-17
Jan-Mar 2012: 37.2%
Age: 16-17
Feb-Apr 2012: 36.7%
Age: 16-17
Mar-May 2012: 36.1%
Age: 16-17
Apr-Jun 2012: 36.2%
Age: 16-17
May-Jul 2012: 36.7%
Age: 16-17
Jun-Aug 2012: 36.2%
Age: 16-17
Jul-Sep 2012: 35.3%
Age: 16-17
Aug-Oct 2012: 37.0%
Age: 16-17
Sep-Nov 2012: 37.3%
Age: 16-17
Oct-Dec 2012: 37.9%
Age: 16-17
Nov-Jan 2013: 37.3%
Age: 16-17
Dec-Feb 2013: 38.4%
Age: 16-17
Jan-Mar 2013: 37.4%
Age: 16-17
Feb-Apr 2013: 35.9%
Age: 16-17
Mar-May 2013: 37.4%
Age: 16-17
Apr-Jun 2013: 37.5%
Age: 16-17
May-Jul 2013: 38.1%
Age: 16-17
Jun-Aug 2013: 36.6%
Age: 16-17
Jul-Sep 2013: 36.7%
Age: 16-17
Aug-Oct 2013: 36.3%
Age: 16-17
Sep-Nov 2013: 36.5%
Age: 16-17
Oct-Dec 2013: 36.9%
Age: 16-17
Nov-Jan 2014: 36.9%
Age: 16-17
Dec-Feb 2014: 36.4%
Age: 16-17
Jan-Mar 2014: 36.0%
Age: 16-17
Feb-Apr 2014: 34.7%
Age: 16-17
Mar-May 2014: 34.1%
Age: 16-17
Apr-Jun 2014: 33.5%
Age: 16-17
May-Jul 2014: 33.7%
Age: 16-17
Jun-Aug 2014: 33.6%
Age: 16-17
Jul-Sep 2014: 33.1%
Age: 16-17
Aug-Oct 2014: 32.8%
Age: 16-17
Sep-Nov 2014: 32.3%
Age: 16-17
Oct-Dec 2014: 31.6%
Age: 16-17
Nov-Jan 2015: 30.8%
Age: 16-17
Dec-Feb 2015: 30.9%
Age: 16-17
Jan-Mar 2015: 29.5%
Age: 16-17
Feb-Apr 2015: 29.9%
Age: 16-17
Mar-May 2015: 28.6%
Age: 16-17
Apr-Jun 2015: 28.6%
Age: 16-17
May-Jul 2015: 28.1%
Age: 16-17
Jun-Aug 2015: 28.1%
Age: 16-17
Jul-Sep 2015: 27.0%
Age: 16-17
Aug-Oct 2015: 24.9%
Age: 16-17
Sep-Nov 2015: 25.7%
Age: 16-17
Oct-Dec 2015: 26.8%
Age: 16-17
Nov-Jan 2016: 26.9%
Age: 16-17
Dec-Feb 2016: 26.0%
Age: 16-17
Jan-Mar 2016: 25.6%
Age: 16-17
Feb-Apr 2016: 27.2%
Age: 16-17
Mar-May 2016: 28.3%
Age: 16-17
Apr-Jun 2016: 28.8%
Age: 16-17
May-Jul 2016: 29.1%
Age: 16-17
Jun-Aug 2016: 28.7%
Age: 16-17
Jul-Sep 2016: 26.7%
Age: 16-17
Aug-Oct 2016: 27.4%
Age: 16-17
Sep-Nov 2016: 25.7%
Age: 16-17
Oct-Dec 2016: 24.6%
Age: 16-17
Nov-Jan 2017: 23.0%
Age: 16-17
Dec-Feb 2017: 25.1%
Age: 16-17
Jan-Mar 2017: 26.7%
Age: 16-17
Feb-Apr 2017: 26.5%
Age: 16-17
Mar-May 2017: 25.4%
Age: 16-17
Apr-Jun 2017: 24.7%
Age: 16-17
May-Jul 2017: 24.1%
Age: 16-17
Jun-Aug 2017: 23.5%
Age: 16-17
Jul-Sep 2017: 23.5%
Age: 16-17
Aug-Oct 2017: 24.1%
Age: 16-17
Sep-Nov 2017: 25.7%
Age: 16-17
Oct-Dec 2017: 26.6%
Age: 16-17
Nov-Jan 2018: 27.1%
Age: 16-17
Dec-Feb 2018: 27.0%
Age: 16-17
Jan-Mar 2018: 26.4%
Age: 16-17
Feb-Apr 2018: 24.7%
Age: 16-17
Mar-May 2018: 23.4%
Age: 16-17
Apr-Jun 2018: 22.3%
Age: 16-17
May-Jul 2018: 22.4%
Age: 16-17
Jun-Aug 2018: 21.9%
Age: 16-17
Jul-Sep 2018: 21.3%
Age: 16-17
Aug-Oct 2018: 22.8%
Age: 16-17
Sep-Nov 2018: 24.8%
Age: 16-17
Oct-Dec 2018: 24.3%
Age: 16-17
Nov-Jan 2019: 22.2%
Age: 16-17
Dec-Feb 2019: 21.0%
Age: 16-17
Jan-Mar 2019: 19.2%
Age: 16-17
Feb-Apr 2019: 20.3%
Age: 16-17
Mar-May 2019: 19.6%
Age: 16-17
Apr-Jun 2019: 19.4%
Age: 16-17
May-Jul 2019: 19.3%
Age: 16-17
Jun-Aug 2019: 20.3%
Age: 16-17
Jul-Sep 2019: 21.0%
Age: 16-17
Aug-Oct 2019: 20.0%
Age: 16-17
Sep-Nov 2019: 21.4%
Age: 16-17
Oct-Dec 2019: 22.5%
Age: 16-17
Nov-Jan 2020: 22.1%
Age: 16-17
Dec-Feb 2020: 23.8%
Age: 16-17
Jan-Mar 2020: 24.5%
Age: 16-17
Feb-Apr 2020: 26.0%
Age: 16-17
Mar-May 2020: 24.5%
Age: 16-17
Apr-Jun 2020: 25.6%
Age: 16-17
May-Jul 2020: 24.1%
Age: 16-17
Jun-Aug 2020: 24.6%
Age: 16-17
Jul-Sep 2020: 26.3%
Age: 16-17
Aug-Oct 2020: 28.9%
Age: 16-17
Sep-Nov 2020: 26.4%
Age: 16-17
Oct-Dec 2020: 26.7%
Age: 16-17
Nov-Jan 2021: 29.0%
Age: 16-17
Dec-Feb 2021: 32.0%
Age: 16-17
Jan-Mar 2021: 29.9%
Age: 16-17
Feb-Apr 2021: 32.3%
Age: 16-17
Mar-May 2021: 34.1%
Age: 16-17
Apr-Jun 2021: 33.4%
Age: 16-17
May-Jul 2021: 30.2%
Age: 16-17
Jun-Aug 2021: 24.8%
Age: 16-17
Jul-Sep 2021: 22.5%
Age: 16-17
Aug-Oct 2021: 22.2%
Age: 16-17
Sep-Nov 2021: 22.1%
Age: 16-17
Oct-Dec 2021: 20.6%
Age: 16-17
Nov-Jan 2022: 22.3%
Age: 16-17
Dec-Feb 2022: 21.9%
Age: 16-17
Jan-Mar 2022: 22.6%
Age: 16-17
Feb-Apr 2022: 22.4%
Age: 16-17
Mar-May 2022: 21.3%
Age: 18-24
Nov-Jan 2000: 11.0%
Age: 18-24
Dec-Feb 2000: 10.8%
Age: 18-24
Jan-Mar 2000: 11.1%
Age: 18-24
Feb-Apr 2000: 10.8%
Age: 18-24
Mar-May 2000: 11.0%
Age: 18-24
Apr-Jun 2000: 10.6%
Age: 18-24
May-Jul 2000: 10.4%
Age: 18-24
Jun-Aug 2000: 10.2%
Age: 18-24
Jul-Sep 2000: 10.2%
Age: 18-24
Aug-Oct 2000: 10.6%
Age: 18-24
Sep-Nov 2000: 10.5%
Age: 18-24
Oct-Dec 2000: 10.7%
Age: 18-24
Nov-Jan 2001: 10.4%
Age: 18-24
Dec-Feb 2001: 10.6%
Age: 18-24
Jan-Mar 2001: 10.5%
Age: 18-24
Feb-Apr 2001: 10.5%
Age: 18-24
Mar-May 2001: 10.2%
Age: 18-24
Apr-Jun 2001: 10.1%
Age: 18-24
May-Jul 2001: 9.9%
Age: 18-24
Jun-Aug 2001: 10.2%
Age: 18-24
Jul-Sep 2001: 10.2%
Age: 18-24
Aug-Oct 2001: 10.4%
Age: 18-24
Sep-Nov 2001: 10.6%
Age: 18-24
Oct-Dec 2001: 10.9%
Age: 18-24
Nov-Jan 2002: 10.8%
Age: 18-24
Dec-Feb 2002: 10.6%
Age: 18-24
Jan-Mar 2002: 10.8%
Age: 18-24
Feb-Apr 2002: 10.5%
Age: 18-24
Mar-May 2002: 10.4%
Age: 18-24
Apr-Jun 2002: 10.2%
Age: 18-24
May-Jul 2002: 10.5%
Age: 18-24
Jun-Aug 2002: 10.7%
Age: 18-24
Jul-Sep 2002: 10.5%
Age: 18-24
Aug-Oct 2002: 10.2%
Age: 18-24
Sep-Nov 2002: 10.5%
Age: 18-24
Oct-Dec 2002: 10.3%
Age: 18-24
Nov-Jan 2003: 10.1%
Age: 18-24
Dec-Feb 2003: 10.6%
Age: 18-24
Jan-Mar 2003: 11.1%
Age: 18-24
Feb-Apr 2003: 10.9%
Age: 18-24
Mar-May 2003: 10.6%
Age: 18-24
Apr-Jun 2003: 10.5%
Age: 18-24
May-Jul 2003: 10.9%
Age: 18-24
Jun-Aug 2003: 10.9%
Age: 18-24
Jul-Sep 2003: 10.7%
Age: 18-24
Aug-Oct 2003: 10.2%
Age: 18-24
Sep-Nov 2003: 9.9%
Age: 18-24
Oct-Dec 2003: 9.9%
Age: 18-24
Nov-Jan 2004: 10.0%
Age: 18-24
Dec-Feb 2004: 10.1%
Age: 18-24
Jan-Mar 2004: 10.2%
Age: 18-24
Feb-Apr 2004: 10.2%
Age: 18-24
Mar-May 2004: 9.9%
Age: 18-24
Apr-Jun 2004: 10.2%
Age: 18-24
May-Jul 2004: 10.2%
Age: 18-24
Jun-Aug 2004: 10.3%
Age: 18-24
Jul-Sep 2004: 10.4%
Age: 18-24
Aug-Oct 2004: 10.3%
Age: 18-24
Sep-Nov 2004: 10.5%
Age: 18-24
Oct-Dec 2004: 10.8%
Age: 18-24
Nov-Jan 2005: 10.7%
Age: 18-24
Dec-Feb 2005: 10.9%
Age: 18-24
Jan-Mar 2005: 10.3%
Age: 18-24
Feb-Apr 2005: 10.5%
Age: 18-24
Mar-May 2005: 10.8%
Age: 18-24
Apr-Jun 2005: 10.9%
Age: 18-24
May-Jul 2005: 10.7%
Age: 18-24
Jun-Aug 2005: 10.7%
Age: 18-24
Jul-Sep 2005: 10.9%
Age: 18-24
Aug-Oct 2005: 11.7%
Age: 18-24
Sep-Nov 2005: 11.7%
Age: 18-24
Oct-Dec 2005: 11.9%
Age: 18-24
Nov-Jan 2006: 11.5%
Age: 18-24
Dec-Feb 2006: 11.5%
Age: 18-24
Jan-Mar 2006: 11.7%
Age: 18-24
Feb-Apr 2006: 11.9%
Age: 18-24
Mar-May 2006: 12.3%
Age: 18-24
Apr-Jun 2006: 12.5%
Age: 18-24
May-Jul 2006: 12.8%
Age: 18-24
Jun-Aug 2006: 12.5%
Age: 18-24
Jul-Sep 2006: 12.4%
Age: 18-24
Aug-Oct 2006: 12.2%
Age: 18-24
Sep-Nov 2006: 11.8%
Age: 18-24
Oct-Dec 2006: 12.2%
Age: 18-24
Nov-Jan 2007: 12.3%
Age: 18-24
Dec-Feb 2007: 12.5%
Age: 18-24
Jan-Mar 2007: 12.5%
Age: 18-24
Feb-Apr 2007: 12.6%
Age: 18-24
Mar-May 2007: 12.7%
Age: 18-24
Apr-Jun 2007: 12.5%
Age: 18-24
May-Jul 2007: 12.1%
Age: 18-24
Jun-Aug 2007: 12.2%
Age: 18-24
Jul-Sep 2007: 11.9%
Age: 18-24
Aug-Oct 2007: 11.8%
Age: 18-24
Sep-Nov 2007: 11.9%
Age: 18-24
Oct-Dec 2007: 11.9%
Age: 18-24
Nov-Jan 2008: 12.0%
Age: 18-24
Dec-Feb 2008: 12.0%
Age: 18-24
Jan-Mar 2008: 12.2%
Age: 18-24
Feb-Apr 2008: 12.4%
Age: 18-24
Mar-May 2008: 12.0%
Age: 18-24
Apr-Jun 2008: 12.6%
Age: 18-24
May-Jul 2008: 12.8%
Age: 18-24
Jun-Aug 2008: 13.3%
Age: 18-24
Jul-Sep 2008: 13.7%
Age: 18-24
Aug-Oct 2008: 14.0%
Age: 18-24
Sep-Nov 2008: 14.4%
Age: 18-24
Oct-Dec 2008: 14.6%
Age: 18-24
Nov-Jan 2009: 14.8%
Age: 18-24
Dec-Feb 2009: 15.2%
Age: 18-24
Jan-Mar 2009: 16.3%
Age: 18-24
Feb-Apr 2009: 16.9%
Age: 18-24
Mar-May 2009: 17.6%
Age: 18-24
Apr-Jun 2009: 17.4%
Age: 18-24
May-Jul 2009: 17.5%
Age: 18-24
Jun-Aug 2009: 17.6%
Age: 18-24
Jul-Sep 2009: 18.0%
Age: 18-24
Aug-Oct 2009: 18.3%
Age: 18-24
Sep-Nov 2009: 17.6%
Age: 18-24
Oct-Dec 2009: 17.5%
Age: 18-24
Nov-Jan 2010: 17.5%
Age: 18-24
Dec-Feb 2010: 17.8%
Age: 18-24
Jan-Mar 2010: 18.1%
Age: 18-24
Feb-Apr 2010: 17.8%
Age: 18-24
Mar-May 2010: 17.7%
Age: 18-24
Apr-Jun 2010: 17.9%
Age: 18-24
May-Jul 2010: 17.7%
Age: 18-24
Jun-Aug 2010: 18.0%
Age: 18-24
Jul-Sep 2010: 17.3%
Age: 18-24
Aug-Oct 2010: 17.9%
Age: 18-24
Sep-Nov 2010: 18.2%
Age: 18-24
Oct-Dec 2010: 18.2%
Age: 18-24
Nov-Jan 2011: 18.3%
Age: 18-24
Dec-Feb 2011: 18.0%
Age: 18-24
Jan-Mar 2011: 17.9%
Age: 18-24
Feb-Apr 2011: 17.3%
Age: 18-24
Mar-May 2011: 17.8%
Age: 18-24
Apr-Jun 2011: 18.4%
Age: 18-24
May-Jul 2011: 19.0%
Age: 18-24
Jun-Aug 2011: 19.6%
Age: 18-24
Jul-Sep 2011: 19.8%
Age: 18-24
Aug-Oct 2011: 20.1%
Age: 18-24
Sep-Nov 2011: 20.3%
Age: 18-24
Oct-Dec 2011: 20.2%
Age: 18-24
Nov-Jan 2012: 20.0%
Age: 18-24
Dec-Feb 2012: 19.8%
Age: 18-24
Jan-Mar 2012: 19.9%
Age: 18-24
Feb-Apr 2012: 19.8%
Age: 18-24
Mar-May 2012: 20.0%
Age: 18-24
Apr-Jun 2012: 19.5%
Age: 18-24
May-Jul 2012: 19.6%
Age: 18-24
Jun-Aug 2012: 18.8%
Age: 18-24
Jul-Sep 2012: 19.0%
Age: 18-24
Aug-Oct 2012: 18.3%
Age: 18-24
Sep-Nov 2012: 18.6%
Age: 18-24
Oct-Dec 2012: 18.9%
Age: 18-24
Nov-Jan 2013: 19.4%
Age: 18-24
Dec-Feb 2013: 19.1%
Age: 18-24
Jan-Mar 2013: 18.7%
Age: 18-24
Feb-Apr 2013: 18.6%
Age: 18-24
Mar-May 2013: 18.8%
Age: 18-24
Apr-Jun 2013: 19.3%
Age: 18-24
May-Jul 2013: 19.1%
Age: 18-24
Jun-Aug 2013: 19.3%
Age: 18-24
Jul-Sep 2013: 19.2%
Age: 18-24
Aug-Oct 2013: 18.6%
Age: 18-24
Sep-Nov 2013: 18.0%
Age: 18-24
Oct-Dec 2013: 18.0%
Age: 18-24
Nov-Jan 2014: 17.7%
Age: 18-24
Dec-Feb 2014: 17.1%
Age: 18-24
Jan-Mar 2014: 16.8%
Age: 18-24
Feb-Apr 2014: 16.2%
Age: 18-24
Mar-May 2014: 15.7%
Age: 18-24
Apr-Jun 2014: 14.7%
Age: 18-24
May-Jul 2014: 14.5%
Age: 18-24
Jun-Aug 2014: 14.0%
Age: 18-24
Jul-Sep 2014: 14.4%
Age: 18-24
Aug-Oct 2014: 14.7%
Age: 18-24
Sep-Nov 2014: 15.2%
Age: 18-24
Oct-Dec 2014: 14.5%
Age: 18-24
Nov-Jan 2015: 14.5%
Age: 18-24
Dec-Feb 2015: 14.3%
Age: 18-24
Jan-Mar 2015: 14.2%
Age: 18-24
Feb-Apr 2015: 14.2%
Age: 18-24
Mar-May 2015: 14.1%
Age: 18-24
Apr-Jun 2015: 14.1%
Age: 18-24
May-Jul 2015: 13.9%
Age: 18-24
Jun-Aug 2015: 13.1%
Age: 18-24
Jul-Sep 2015: 12.6%
Age: 18-24
Aug-Oct 2015: 12.2%
Age: 18-24
Sep-Nov 2015: 12.3%
Age: 18-24
Oct-Dec 2015: 12.0%
Age: 18-24
Nov-Jan 2016: 12.2%
Age: 18-24
Dec-Feb 2016: 12.3%
Age: 18-24
Jan-Mar 2016: 12.2%
Age: 18-24
Feb-Apr 2016: 11.9%
Age: 18-24
Mar-May 2016: 11.6%
Age: 18-24
Apr-Jun 2016: 11.7%
Age: 18-24
May-Jul 2016: 11.9%
Age: 18-24
Jun-Aug 2016: 12.0%
Age: 18-24
Jul-Sep 2016: 11.7%
Age: 18-24
Aug-Oct 2016: 11.4%
Age: 18-24
Sep-Nov 2016: 11.1%
Age: 18-24
Oct-Dec 2016: 11.0%
Age: 18-24
Nov-Jan 2017: 11.0%
Age: 18-24
Dec-Feb 2017: 10.9%
Age: 18-24
Jan-Mar 2017: 10.6%
Age: 18-24
Feb-Apr 2017: 10.7%
Age: 18-24
Mar-May 2017: 11.0%
Age: 18-24
Apr-Jun 2017: 10.9%
Age: 18-24
May-Jul 2017: 10.7%
Age: 18-24
Jun-Aug 2017: 10.9%
Age: 18-24
Jul-Sep 2017: 10.7%
Age: 18-24
Aug-Oct 2017: 10.6%
Age: 18-24
Sep-Nov 2017: 10.6%
Age: 18-24
Oct-Dec 2017: 10.8%
Age: 18-24
Nov-Jan 2018: 10.5%
Age: 18-24
Dec-Feb 2018: 10.2%
Age: 18-24
Jan-Mar 2018: 10.3%
Age: 18-24
Feb-Apr 2018: 10.3%
Age: 18-24
Mar-May 2018: 10.6%
Age: 18-24
Apr-Jun 2018: 10.0%
Age: 18-24
May-Jul 2018: 10.0%
Age: 18-24
Jun-Aug 2018: 9.6%
Age: 18-24
Jul-Sep 2018: 10.1%
Age: 18-24
Aug-Oct 2018: 10.2%
Age: 18-24
Sep-Nov 2018: 10.3%
Age: 18-24
Oct-Dec 2018: 10.4%
Age: 18-24
Nov-Jan 2019: 10.4%
Age: 18-24
Dec-Feb 2019: 10.3%
Age: 18-24
Jan-Mar 2019: 9.9%
Age: 18-24
Feb-Apr 2019: 10.2%
Age: 18-24
Mar-May 2019: 10.7%
Age: 18-24
Apr-Jun 2019: 10.8%
Age: 18-24
May-Jul 2019: 10.5%
Age: 18-24
Jun-Aug 2019: 10.8%
Age: 18-24
Jul-Sep 2019: 10.8%
Age: 18-24
Aug-Oct 2019: 10.2%
Age: 18-24
Sep-Nov 2019: 10.2%
Age: 18-24
Oct-Dec 2019: 10.0%
Age: 18-24
Nov-Jan 2020: 10.5%
Age: 18-24
Dec-Feb 2020: 10.5%
Age: 18-24
Jan-Mar 2020: 10.9%
Age: 18-24
Feb-Apr 2020: 11.2%
Age: 18-24
Mar-May 2020: 11.7%
Age: 18-24
Apr-Jun 2020: 11.7%
Age: 18-24
May-Jul 2020: 12.6%
Age: 18-24
Jun-Aug 2020: 13.2%
Age: 18-24
Jul-Sep 2020: 13.9%
Age: 18-24
Aug-Oct 2020: 13.6%
Age: 18-24
Sep-Nov 2020: 13.6%
Age: 18-24
Oct-Dec 2020: 13.7%
Age: 18-24
Nov-Jan 2021: 13.4%
Age: 18-24
Dec-Feb 2021: 13.1%
Age: 18-24
Jan-Mar 2021: 12.4%
Age: 18-24
Feb-Apr 2021: 12.0%
Age: 18-24
Mar-May 2021: 11.6%
Age: 18-24
Apr-Jun 2021: 10.9%
Age: 18-24
May-Jul 2021: 11.0%
Age: 18-24
Jun-Aug 2021: 10.6%
Age: 18-24
Jul-Sep 2021: 10.4%
Age: 18-24
Aug-Oct 2021: 9.9%
Age: 18-24
Sep-Nov 2021: 9.7%
Age: 18-24
Oct-Dec 2021: 9.9%
Age: 18-24
Nov-Jan 2022: 9.8%
Age: 18-24
Dec-Feb 2022: 9.9%
Age: 18-24
Jan-Mar 2022: 9.1%
Age: 18-24
Feb-Apr 2022: 9.4%
Age: 18-24
Mar-May 2022: 9.1%
Age: 25-49
Nov-Jan 2000: 4.8%
Age: 25-49
Dec-Feb 2000: 4.7%
Age: 25-49
Jan-Mar 2000: 4.6%
Age: 25-49
Feb-Apr 2000: 4.5%
Age: 25-49
Mar-May 2000: 4.4%
Age: 25-49
Apr-Jun 2000: 4.4%
Age: 25-49
May-Jul 2000: 4.3%
Age: 25-49
Jun-Aug 2000: 4.2%
Age: 25-49
Jul-Sep 2000: 4.2%
Age: 25-49
Aug-Oct 2000: 4.2%
Age: 25-49
Sep-Nov 2000: 4.1%
Age: 25-49
Oct-Dec 2000: 4.0%
Age: 25-49
Nov-Jan 2001: 4.0%
Age: 25-49
Dec-Feb 2001: 4.1%
Age: 25-49
Jan-Mar 2001: 4.1%
Age: 25-49
Feb-Apr 2001: 4.0%
Age: 25-49
Mar-May 2001: 4.0%
Age: 25-49
Apr-Jun 2001: 4.1%
Age: 25-49
May-Jul 2001: 4.1%
Age: 25-49
Jun-Aug 2001: 4.1%
Age: 25-49
Jul-Sep 2001: 4.1%
Age: 25-49
Aug-Oct 2001: 4.0%
Age: 25-49
Sep-Nov 2001: 4.1%
Age: 25-49
Oct-Dec 2001: 4.2%
Age: 25-49
Nov-Jan 2002: 4.2%
Age: 25-49
Dec-Feb 2002: 4.2%
Age: 25-49
Jan-Mar 2002: 4.1%
Age: 25-49
Feb-Apr 2002: 4.2%
Age: 25-49
Mar-May 2002: 4.2%
Age: 25-49
Apr-Jun 2002: 4.1%
Age: 25-49
May-Jul 2002: 4.1%
Age: 25-49
Jun-Aug 2002: 4.1%
Age: 25-49
Jul-Sep 2002: 4.3%
Age: 25-49
Aug-Oct 2002: 4.2%
Age: 25-49
Sep-Nov 2002: 4.1%
Age: 25-49
Oct-Dec 2002: 4.0%
Age: 25-49
Nov-Jan 2003: 3.8%
Age: 25-49
Dec-Feb 2003: 3.9%
Age: 25-49
Jan-Mar 2003: 3.9%
Age: 25-49
Feb-Apr 2003: 3.9%
Age: 25-49
Mar-May 2003: 3.8%
Age: 25-49
Apr-Jun 2003: 3.7%
Age: 25-49
May-Jul 2003: 3.9%
Age: 25-49
Jun-Aug 2003: 3.9%
Age: 25-49
Jul-Sep 2003: 4.0%
Age: 25-49
Aug-Oct 2003: 3.9%
Age: 25-49
Sep-Nov 2003: 3.9%
Age: 25-49
Oct-Dec 2003: 3.9%
Age: 25-49
Nov-Jan 2004: 3.8%
Age: 25-49
Dec-Feb 2004: 3.7%
Age: 25-49
Jan-Mar 2004: 3.7%
Age: 25-49
Feb-Apr 2004: 3.6%
Age: 25-49
Mar-May 2004: 3.7%
Age: 25-49
Apr-Jun 2004: 3.7%
Age: 25-49
May-Jul 2004: 3.6%
Age: 25-49
Jun-Aug 2004: 3.5%
Age: 25-49
Jul-Sep 2004: 3.5%
Age: 25-49
Aug-Oct 2004: 3.5%
Age: 25-49
Sep-Nov 2004: 3.5%
Age: 25-49
Oct-Dec 2004: 3.5%
Age: 25-49
Nov-Jan 2005: 3.5%
Age: 25-49
Dec-Feb 2005: 3.5%
Age: 25-49
Jan-Mar 2005: 3.5%
Age: 25-49
Feb-Apr 2005: 3.5%
Age: 25-49
Mar-May 2005: 3.5%
Age: 25-49
Apr-Jun 2005: 3.5%
Age: 25-49
May-Jul 2005: 3.5%
Age: 25-49
Jun-Aug 2005: 3.4%
Age: 25-49
Jul-Sep 2005: 3.4%
Age: 25-49
Aug-Oct 2005: 3.5%
Age: 25-49
Sep-Nov 2005: 3.7%
Age: 25-49
Oct-Dec 2005: 3.8%
Age: 25-49
Nov-Jan 2006: 3.8%
Age: 25-49
Dec-Feb 2006: 4.0%
Age: 25-49
Jan-Mar 2006: 4.0%
Age: 25-49
Feb-Apr 2006: 4.1%
Age: 25-49
Mar-May 2006: 4.1%
Age: 25-49
Apr-Jun 2006: 4.2%
Age: 25-49
May-Jul 2006: 4.2%
Age: 25-49
Jun-Aug 2006: 4.2%
Age: 25-49
Jul-Sep 2006: 4.1%
Age: 25-49
Aug-Oct 2006: 4.2%
Age: 25-49
Sep-Nov 2006: 4.3%
Age: 25-49
Oct-Dec 2006: 4.3%
Age: 25-49
Nov-Jan 2007: 4.3%
Age: 25-49
Dec-Feb 2007: 4.2%
Age: 25-49
Jan-Mar 2007: 4.2%
Age: 25-49
Feb-Apr 2007: 4.0%
Age: 25-49
Mar-May 2007: 3.9%
Age: 25-49
Apr-Jun 2007: 3.8%
Age: 25-49
May-Jul 2007: 3.8%
Age: 25-49
Jun-Aug 2007: 3.8%
Age: 25-49
Jul-Sep 2007: 3.9%
Age: 25-49
Aug-Oct 2007: 3.9%
Age: 25-49
Sep-Nov 2007: 3.9%
Age: 25-49
Oct-Dec 2007: 3.8%
Age: 25-49
Nov-Jan 2008: 3.9%
Age: 25-49
Dec-Feb 2008: 3.9%
Age: 25-49
Jan-Mar 2008: 3.9%
Age: 25-49
Feb-Apr 2008: 4.0%
Age: 25-49
Mar-May 2008: 3.9%
Age: 25-49
Apr-Jun 2008: 4.0%
Age: 25-49
May-Jul 2008: 4.1%
Age: 25-49
Jun-Aug 2008: 4.3%
Age: 25-49
Jul-Sep 2008: 4.4%
Age: 25-49
Aug-Oct 2008: 4.5%
Age: 25-49
Sep-Nov 2008: 4.7%
Age: 25-49
Oct-Dec 2008: 4.9%
Age: 25-49
Nov-Jan 2009: 5.0%
Age: 25-49
Dec-Feb 2009: 5.3%
Age: 25-49
Jan-Mar 2009: 5.5%
Age: 25-49
Feb-Apr 2009: 5.7%
Age: 25-49
Mar-May 2009: 6.0%
Age: 25-49
Apr-Jun 2009: 6.3%
Age: 25-49
May-Jul 2009: 6.3%
Age: 25-49
Jun-Aug 2009: 6.4%
Age: 25-49
Jul-Sep 2009: 6.3%
Age: 25-49
Aug-Oct 2009: 6.3%
Age: 25-49
Sep-Nov 2009: 6.3%
Age: 25-49
Oct-Dec 2009: 6.2%
Age: 25-49
Nov-Jan 2010: 6.2%
Age: 25-49
Dec-Feb 2010: 6.5%
Age: 25-49
Jan-Mar 2010: 6.5%
Age: 25-49
Feb-Apr 2010: 6.5%
Age: 25-49
Mar-May 2010: 6.4%
Age: 25-49
Apr-Jun 2010: 6.3%
Age: 25-49
May-Jul 2010: 6.3%
Age: 25-49
Jun-Aug 2010: 6.2%
Age: 25-49
Jul-Sep 2010: 6.3%
Age: 25-49
Aug-Oct 2010: 6.3%
Age: 25-49
Sep-Nov 2010: 6.3%
Age: 25-49
Oct-Dec 2010: 6.2%
Age: 25-49
Nov-Jan 2011: 6.3%
Age: 25-49
Dec-Feb 2011: 6.2%
Age: 25-49
Jan-Mar 2011: 6.2%
Age: 25-49
Feb-Apr 2011: 6.2%
Age: 25-49
Mar-May 2011: 6.3%
Age: 25-49
Apr-Jun 2011: 6.4%
Age: 25-49
May-Jul 2011: 6.3%
Age: 25-49
Jun-Aug 2011: 6.5%
Age: 25-49
Jul-Sep 2011: 6.5%
Age: 25-49
Aug-Oct 2011: 6.5%
Age: 25-49
Sep-Nov 2011: 6.6%
Age: 25-49
Oct-Dec 2011: 6.5%
Age: 25-49
Nov-Jan 2012: 6.5%
Age: 25-49
Dec-Feb 2012: 6.4%
Age: 25-49
Jan-Mar 2012: 6.3%
Age: 25-49
Feb-Apr 2012: 6.3%
Age: 25-49
Mar-May 2012: 6.2%
Age: 25-49
Apr-Jun 2012: 6.2%
Age: 25-49
May-Jul 2012: 6.2%
Age: 25-49
Jun-Aug 2012: 6.2%
Age: 25-49
Jul-Sep 2012: 6.2%
Age: 25-49
Aug-Oct 2012: 6.3%
Age: 25-49
Sep-Nov 2012: 6.1%
Age: 25-49
Oct-Dec 2012: 6.1%
Age: 25-49
Nov-Jan 2013: 6.1%
Age: 25-49
Dec-Feb 2013: 6.4%
Age: 25-49
Jan-Mar 2013: 6.2%
Age: 25-49
Feb-Apr 2013: 6.1%
Age: 25-49
Mar-May 2013: 6.0%
Age: 25-49
Apr-Jun 2013: 5.9%
Age: 25-49
May-Jul 2013: 5.9%
Age: 25-49
Jun-Aug 2013: 5.9%
Age: 25-49
Jul-Sep 2013: 5.8%
Age: 25-49
Aug-Oct 2013: 5.6%
Age: 25-49
Sep-Nov 2013: 5.4%
Age: 25-49
Oct-Dec 2013: 5.5%
Age: 25-49
Nov-Jan 2014: 5.5%
Age: 25-49
Dec-Feb 2014: 5.2%
Age: 25-49
Jan-Mar 2014: 5.1%
Age: 25-49
Feb-Apr 2014: 5.0%
Age: 25-49
Mar-May 2014: 4.9%
Age: 25-49
Apr-Jun 2014: 4.9%
Age: 25-49
May-Jul 2014: 4.8%
Age: 25-49
Jun-Aug 2014: 4.8%
Age: 25-49
Jul-Sep 2014: 4.7%
Age: 25-49
Aug-Oct 2014: 4.6%
Age: 25-49
Sep-Nov 2014: 4.4%
Age: 25-49
Oct-Dec 2014: 4.3%
Age: 25-49
Nov-Jan 2015: 4.3%
Age: 25-49
Dec-Feb 2015: 4.2%
Age: 25-49
Jan-Mar 2015: 4.2%
Age: 25-49
Feb-Apr 2015: 4.2%
Age: 25-49
Mar-May 2015: 4.4%
Age: 25-49
Apr-Jun 2015: 4.3%
Age: 25-49
May-Jul 2015: 4.2%
Age: 25-49
Jun-Aug 2015: 4.1%
Age: 25-49
Jul-Sep 2015: 4.2%
Age: 25-49
Aug-Oct 2015: 4.1%
Age: 25-49
Sep-Nov 2015: 3.9%
Age: 25-49
Oct-Dec 2015: 4.0%
Age: 25-49
Nov-Jan 2016: 3.9%
Age: 25-49
Dec-Feb 2016: 3.9%
Age: 25-49
Jan-Mar 2016: 3.8%
Age: 25-49
Feb-Apr 2016: 3.8%
Age: 25-49
Mar-May 2016: 3.8%
Age: 25-49
Apr-Jun 2016: 3.8%
Age: 25-49
May-Jul 2016: 3.7%
Age: 25-49
Jun-Aug 2016: 3.8%
Age: 25-49
Jul-Sep 2016: 3.8%
Age: 25-49
Aug-Oct 2016: 3.8%
Age: 25-49
Sep-Nov 2016: 3.9%
Age: 25-49
Oct-Dec 2016: 3.8%
Age: 25-49
Nov-Jan 2017: 3.8%
Age: 25-49
Dec-Feb 2017: 3.7%
Age: 25-49
Jan-Mar 2017: 3.6%
Age: 25-49
Feb-Apr 2017: 3.5%
Age: 25-49
Mar-May 2017: 3.4%
Age: 25-49
Apr-Jun 2017: 3.4%
Age: 25-49
May-Jul 2017: 3.2%
Age: 25-49
Jun-Aug 2017: 3.3%
Age: 25-49
Jul-Sep 2017: 3.2%
Age: 25-49
Aug-Oct 2017: 3.2%
Age: 25-49
Sep-Nov 2017: 3.2%
Age: 25-49
Oct-Dec 2017: 3.3%
Age: 25-49
Nov-Jan 2018: 3.2%
Age: 25-49
Dec-Feb 2018: 3.2%
Age: 25-49
Jan-Mar 2018: 3.1%
Age: 25-49
Feb-Apr 2018: 3.1%
Age: 25-49
Mar-May 2018: 3.1%
Age: 25-49
Apr-Jun 2018: 3.1%
Age: 25-49
May-Jul 2018: 3.1%
Age: 25-49
Jun-Aug 2018: 3.1%
Age: 25-49
Jul-Sep 2018: 3.2%
Age: 25-49
Aug-Oct 2018: 3.1%
Age: 25-49
Sep-Nov 2018: 3.0%
Age: 25-49
Oct-Dec 2018: 3.0%
Age: 25-49
Nov-Jan 2019: 2.9%
Age: 25-49
Dec-Feb 2019: 3.0%
Age: 25-49
Jan-Mar 2019: 2.9%
Age: 25-49
Feb-Apr 2019: 2.9%
Age: 25-49
Mar-May 2019: 2.8%
Age: 25-49
Apr-Jun 2019: 2.9%
Age: 25-49
May-Jul 2019: 2.8%
Age: 25-49
Jun-Aug 2019: 2.9%
Age: 25-49
Jul-Sep 2019: 2.8%
Age: 25-49
Aug-Oct 2019: 2.7%
Age: 25-49
Sep-Nov 2019: 2.8%
Age: 25-49
Oct-Dec 2019: 2.7%
Age: 25-49
Nov-Jan 2020: 2.8%
Age: 25-49
Dec-Feb 2020: 2.8%
Age: 25-49
Jan-Mar 2020: 2.8%
Age: 25-49
Feb-Apr 2020: 2.9%
Age: 25-49
Mar-May 2020: 3.0%
Age: 25-49
Apr-Jun 2020: 3.0%
Age: 25-49
May-Jul 2020: 3.2%
Age: 25-49
Jun-Aug 2020: 3.3%
Age: 25-49
Jul-Sep 2020: 3.6%
Age: 25-49
Aug-Oct 2020: 3.7%
Age: 25-49
Sep-Nov 2020: 3.9%
Age: 25-49
Oct-Dec 2020: 3.9%
Age: 25-49
Nov-Jan 2021: 3.9%
Age: 25-49
Dec-Feb 2021: 3.7%
Age: 25-49
Jan-Mar 2021: 3.7%
Age: 25-49
Feb-Apr 2021: 3.8%
Age: 25-49
Mar-May 2021: 3.7%
Age: 25-49
Apr-Jun 2021: 3.7%
Age: 25-49
May-Jul 2021: 3.5%
Age: 25-49
Jun-Aug 2021: 3.5%
Age: 25-49
Jul-Sep 2021: 3.2%
Age: 25-49
Aug-Oct 2021: 3.2%
Age: 25-49
Sep-Nov 2021: 3.1%
Age: 25-49
Oct-Dec 2021: 3.1%
Age: 25-49
Nov-Jan 2022: 3.1%
Age: 25-49
Dec-Feb 2022: 2.9%
Age: 25-49
Jan-Mar 2022: 2.9%
Age: 25-49
Feb-Apr 2022: 2.9%
Age: 25-49
Mar-May 2022: 3.0%
Age: 50 and over
Nov-Jan 2000: 4.2%
Age: 50 and over
Dec-Feb 2000: 4.1%
Age: 50 and over
Jan-Mar 2000: 4.2%
Age: 50 and over
Feb-Apr 2000: 4.0%
Age: 50 and over
Mar-May 2000: 4.0%
Age: 50 and over
Apr-Jun 2000: 4.0%
Age: 50 and over
May-Jul 2000: 3.8%
Age: 50 and over
Jun-Aug 2000: 3.7%
Age: 50 and over
Jul-Sep 2000: 3.7%
Age: 50 and over
Aug-Oct 2000: 3.7%
Age: 50 and over
Sep-Nov 2000: 3.7%
Age: 50 and over
Oct-Dec 2000: 3.7%
Age: 50 and over
Nov-Jan 2001: 3.6%
Age: 50 and over
Dec-Feb 2001: 3.5%
Age: 50 and over
Jan-Mar 2001: 3.3%
Age: 50 and over
Feb-Apr 2001: 3.2%
Age: 50 and over
Mar-May 2001: 2.9%
Age: 50 and over
Apr-Jun 2001: 3.1%
Age: 50 and over
May-Jul 2001: 3.1%
Age: 50 and over
Jun-Aug 2001: 3.2%
Age: 50 and over
Jul-Sep 2001: 3.3%
Age: 50 and over
Aug-Oct 2001: 3.2%
Age: 50 and over
Sep-Nov 2001: 3.0%
Age: 50 and over
Oct-Dec 2001: 3.1%
Age: 50 and over
Nov-Jan 2002: 3.1%
Age: 50 and over
Dec-Feb 2002: 3.1%
Age: 50 and over
Jan-Mar 2002: 3.1%
Age: 50 and over
Feb-Apr 2002: 3.2%
Age: 50 and over
Mar-May 2002: 3.4%
Age: 50 and over
Apr-Jun 2002: 3.4%
Age: 50 and over
May-Jul 2002: 3.5%
Age: 50 and over
Jun-Aug 2002: 3.4%
Age: 50 and over
Jul-Sep 2002: 3.5%
Age: 50 and over
Aug-Oct 2002: 3.4%
Age: 50 and over
Sep-Nov 2002: 3.3%
Age: 50 and over
Oct-Dec 2002: 3.3%
Age: 50 and over
Nov-Jan 2003: 3.3%
Age: 50 and over
Dec-Feb 2003: 3.3%
Age: 50 and over
Jan-Mar 2003: 3.3%
Age: 50 and over
Feb-Apr 2003: 3.2%
Age: 50 and over
Mar-May 2003: 3.1%
Age: 50 and over
Apr-Jun 2003: 3.1%
Age: 50 and over
May-Jul 2003: 3.1%
Age: 50 and over
Jun-Aug 2003: 3.0%
Age: 50 and over
Jul-Sep 2003: 3.0%
Age: 50 and over
Aug-Oct 2003: 3.0%
Age: 50 and over
Sep-Nov 2003: 3.1%
Age: 50 and over
Oct-Dec 2003: 3.0%
Age: 50 and over
Nov-Jan 2004: 2.9%
Age: 50 and over
Dec-Feb 2004: 2.9%
Age: 50 and over
Jan-Mar 2004: 2.9%
Age: 50 and over
Feb-Apr 2004: 2.9%
Age: 50 and over
Mar-May 2004: 2.9%
Age: 50 and over
Apr-Jun 2004: 2.8%
Age: 50 and over
May-Jul 2004: 2.8%
Age: 50 and over
Jun-Aug 2004: 2.7%
Age: 50 and over
Jul-Sep 2004: 2.7%
Age: 50 and over
Aug-Oct 2004: 2.7%
Age: 50 and over
Sep-Nov 2004: 2.7%
Age: 50 and over
Oct-Dec 2004: 2.8%
Age: 50 and over
Nov-Jan 2005: 2.8%
Age: 50 and over
Dec-Feb 2005: 2.8%
Age: 50 and over
Jan-Mar 2005: 2.8%
Age: 50 and over
Feb-Apr 2005: 2.7%
Age: 50 and over
Mar-May 2005: 2.6%
Age: 50 and over
Apr-Jun 2005: 2.7%
Age: 50 and over
May-Jul 2005: 2.8%
Age: 50 and over
Jun-Aug 2005: 2.8%
Age: 50 and over
Jul-Sep 2005: 2.8%
Age: 50 and over
Aug-Oct 2005: 2.9%
Age: 50 and over
Sep-Nov 2005: 3.0%
Age: 50 and over
Oct-Dec 2005: 2.9%
Age: 50 and over
Nov-Jan 2006: 2.9%
Age: 50 and over
Dec-Feb 2006: 2.8%
Age: 50 and over
Jan-Mar 2006: 2.9%
Age: 50 and over
Feb-Apr 2006: 3.0%
Age: 50 and over
Mar-May 2006: 3.0%
Age: 50 and over
Apr-Jun 2006: 3.0%
Age: 50 and over
May-Jul 2006: 3.0%
Age: 50 and over
Jun-Aug 2006: 3.1%
Age: 50 and over
Jul-Sep 2006: 3.2%
Age: 50 and over
Aug-Oct 2006: 3.1%
Age: 50 and over
Sep-Nov 2006: 3.0%
Age: 50 and over
Oct-Dec 2006: 3.0%
Age: 50 and over
Nov-Jan 2007: 3.0%
Age: 50 and over
Dec-Feb 2007: 3.1%
Age: 50 and over
Jan-Mar 2007: 3.1%
Age: 50 and over
Feb-Apr 2007: 3.2%
Age: 50 and over
Mar-May 2007: 3.1%
Age: 50 and over
Apr-Jun 2007: 3.1%
Age: 50 and over
May-Jul 2007: 3.1%
Age: 50 and over
Jun-Aug 2007: 3.0%
Age: 50 and over
Jul-Sep 2007: 3.1%
Age: 50 and over
Aug-Oct 2007: 3.0%
Age: 50 and over
Sep-Nov 2007: 3.0%
Age: 50 and over
Oct-Dec 2007: 2.9%
Age: 50 and over
Nov-Jan 2008: 2.8%
Age: 50 and over
Dec-Feb 2008: 2.9%
Age: 50 and over
Jan-Mar 2008: 2.8%
Age: 50 and over
Feb-Apr 2008: 2.9%
Age: 50 and over
Mar-May 2008: 2.8%
Age: 50 and over
Apr-Jun 2008: 2.9%
Age: 50 and over
May-Jul 2008: 3.0%
Age: 50 and over
Jun-Aug 2008: 3.2%
Age: 50 and over
Jul-Sep 2008: 3.3%
Age: 50 and over
Aug-Oct 2008: 3.4%
Age: 50 and over
Sep-Nov 2008: 3.6%
Age: 50 and over
Oct-Dec 2008: 3.8%
Age: 50 and over
Nov-Jan 2009: 3.8%
Age: 50 and over
Dec-Feb 2009: 4.0%
Age: 50 and over
Jan-Mar 2009: 4.2%
Age: 50 and over
Feb-Apr 2009: 4.3%
Age: 50 and over
Mar-May 2009: 4.3%
Age: 50 and over
Apr-Jun 2009: 4.5%
Age: 50 and over
May-Jul 2009: 4.5%
Age: 50 and over
Jun-Aug 2009: 4.5%
Age: 50 and over
Jul-Sep 2009: 4.5%
Age: 50 and over
Aug-Oct 2009: 4.6%
Age: 50 and over
Sep-Nov 2009: 4.7%
Age: 50 and over
Oct-Dec 2009: 4.7%
Age: 50 and over
Nov-Jan 2010: 4.7%
Age: 50 and over
Dec-Feb 2010: 4.6%
Age: 50 and over
Jan-Mar 2010: 4.6%
Age: 50 and over
Feb-Apr 2010: 4.4%
Age: 50 and over
Mar-May 2010: 4.6%
Age: 50 and over
Apr-Jun 2010: 4.6%
Age: 50 and over
May-Jul 2010: 4.6%
Age: 50 and over
Jun-Aug 2010: 4.6%
Age: 50 and over
Jul-Sep 2010: 4.6%
Age: 50 and over
Aug-Oct 2010: 4.6%
Age: 50 and over
Sep-Nov 2010: 4.5%
Age: 50 and over
Oct-Dec 2010: 4.5%
Age: 50 and over
Nov-Jan 2011: 4.5%
Age: 50 and over
Dec-Feb 2011: 4.5%
Age: 50 and over
Jan-Mar 2011: 4.6%
Age: 50 and over
Feb-Apr 2011: 4.6%
Age: 50 and over
Mar-May 2011: 4.5%
Age: 50 and over
Apr-Jun 2011: 4.5%
Age: 50 and over
May-Jul 2011: 4.5%
Age: 50 and over
Jun-Aug 2011: 4.5%
Age: 50 and over
Jul-Sep 2011: 4.7%
Age: 50 and over
Aug-Oct 2011: 4.8%
Age: 50 and over
Sep-Nov 2011: 5.0%
Age: 50 and over
Oct-Dec 2011: 4.9%
Age: 50 and over
Nov-Jan 2012: 4.9%
Age: 50 and over
Dec-Feb 2012: 5.0%
Age: 50 and over
Jan-Mar 2012: 4.9%
Age: 50 and over
Feb-Apr 2012: 4.9%
Age: 50 and over
Mar-May 2012: 4.6%
Age: 50 and over
Apr-Jun 2012: 4.5%
Age: 50 and over
May-Jul 2012: 4.6%
Age: 50 and over
Jun-Aug 2012: 4.6%
Age: 50 and over
Jul-Sep 2012: 4.4%
Age: 50 and over
Aug-Oct 2012: 4.5%
Age: 50 and over
Sep-Nov 2012: 4.5%
Age: 50 and over
Oct-Dec 2012: 4.4%
Age: 50 and over
Nov-Jan 2013: 4.4%
Age: 50 and over
Dec-Feb 2013: 4.5%
Age: 50 and over
Jan-Mar 2013: 4.6%
Age: 50 and over
Feb-Apr 2013: 4.7%
Age: 50 and over
Mar-May 2013: 4.6%
Age: 50 and over
Apr-Jun 2013: 4.6%
Age: 50 and over
May-Jul 2013: 4.5%
Age: 50 and over
Jun-Aug 2013: 4.5%
Age: 50 and over
Jul-Sep 2013: 4.4%
Age: 50 and over
Aug-Oct 2013: 4.4%
Age: 50 and over
Sep-Nov 2013: 4.2%
Age: 50 and over
Oct-Dec 2013: 4.2%
Age: 50 and over
Nov-Jan 2014: 4.3%
Age: 50 and over
Dec-Feb 2014: 4.2%
Age: 50 and over
Jan-Mar 2014: 4.1%
Age: 50 and over
Feb-Apr 2014: 4.0%
Age: 50 and over
Mar-May 2014: 4.0%
Age: 50 and over
Apr-Jun 2014: 4.0%
Age: 50 and over
May-Jul 2014: 3.7%
Age: 50 and over
Jun-Aug 2014: 3.6%
Age: 50 and over
Jul-Sep 2014: 3.6%
Age: 50 and over
Aug-Oct 2014: 3.5%
Age: 50 and over
Sep-Nov 2014: 3.4%
Age: 50 and over
Oct-Dec 2014: 3.3%
Age: 50 and over
Nov-Jan 2015: 3.2%
Age: 50 and over
Dec-Feb 2015: 3.2%
Age: 50 and over
Jan-Mar 2015: 3.2%
Age: 50 and over
Feb-Apr 2015: 3.1%
Age: 50 and over
Mar-May 2015: 3.3%
Age: 50 and over
Apr-Jun 2015: 3.3%
Age: 50 and over
May-Jul 2015: 3.3%
Age: 50 and over
Jun-Aug 2015: 3.4%
Age: 50 and over
Jul-Sep 2015: 3.3%
Age: 50 and over
Aug-Oct 2015: 3.4%
Age: 50 and over
Sep-Nov 2015: 3.3%
Age: 50 and over
Oct-Dec 2015: 3.2%
Age: 50 and over
Nov-Jan 2016: 3.2%
Age: 50 and over
Dec-Feb 2016: 3.4%
Age: 50 and over
Jan-Mar 2016: 3.5%
Age: 50 and over
Feb-Apr 2016: 3.4%
Age: 50 and over
Mar-May 2016: 3.3%
Age: 50 and over
Apr-Jun 2016: 3.1%
Age: 50 and over
May-Jul 2016: 3.2%
Age: 50 and over
Jun-Aug 2016: 3.2%
Age: 50 and over
Jul-Sep 2016: 3.1%
Age: 50 and over
Aug-Oct 2016: 3.1%
Age: 50 and over
Sep-Nov 2016: 3.0%
Age: 50 and over
Oct-Dec 2016: 3.1%
Age: 50 and over
Nov-Jan 2017: 3.0%
Age: 50 and over
Dec-Feb 2017: 3.0%
Age: 50 and over
Jan-Mar 2017: 2.8%
Age: 50 and over
Feb-Apr 2017: 2.9%
Age: 50 and over
Mar-May 2017: 2.8%
Age: 50 and over
Apr-Jun 2017: 2.9%
Age: 50 and over
May-Jul 2017: 3.1%
Age: 50 and over
Jun-Aug 2017: 3.0%
Age: 50 and over
Jul-Sep 2017: 2.9%
Age: 50 and over
Aug-Oct 2017: 2.9%
Age: 50 and over
Sep-Nov 2017: 2.9%
Age: 50 and over
Oct-Dec 2017: 2.9%
Age: 50 and over
Nov-Jan 2018: 2.9%
Age: 50 and over
Dec-Feb 2018: 2.8%
Age: 50 and over
Jan-Mar 2018: 3.0%
Age: 50 and over
Feb-Apr 2018: 2.9%
Age: 50 and over
Mar-May 2018: 2.9%
Age: 50 and over
Apr-Jun 2018: 2.7%
Age: 50 and over
May-Jul 2018: 2.6%
Age: 50 and over
Jun-Aug 2018: 2.8%
Age: 50 and over
Jul-Sep 2018: 2.8%
Age: 50 and over
Aug-Oct 2018: 2.7%
Age: 50 and over
Sep-Nov 2018: 2.7%
Age: 50 and over
Oct-Dec 2018: 2.7%
Age: 50 and over
Nov-Jan 2019: 2.7%
Age: 50 and over
Dec-Feb 2019: 2.7%
Age: 50 and over
Jan-Mar 2019: 2.7%
Age: 50 and over
Feb-Apr 2019: 2.6%
Age: 50 and over
Mar-May 2019: 2.6%
Age: 50 and over
Apr-Jun 2019: 2.5%
Age: 50 and over
May-Jul 2019: 2.5%
Age: 50 and over
Jun-Aug 2019: 2.5%
Age: 50 and over
Jul-Sep 2019: 2.6%
Age: 50 and over
Aug-Oct 2019: 2.7%
Age: 50 and over
Sep-Nov 2019: 2.6%
Age: 50 and over
Oct-Dec 2019: 2.6%
Age: 50 and over
Nov-Jan 2020: 2.8%
Age: 50 and over
Dec-Feb 2020: 2.9%
Age: 50 and over
Jan-Mar 2020: 2.7%
Age: 50 and over
Feb-Apr 2020: 2.6%
Age: 50 and over
Mar-May 2020: 2.5%
Age: 50 and over
Apr-Jun 2020: 2.6%
Age: 50 and over
May-Jul 2020: 2.8%
Age: 50 and over
Jun-Aug 2020: 3.2%
Age: 50 and over
Jul-Sep 2020: 3.4%
Age: 50 and over
Aug-Oct 2020: 3.7%
Age: 50 and over
Sep-Nov 2020: 3.8%
Age: 50 and over
Oct-Dec 2020: 3.9%
Age: 50 and over
Nov-Jan 2021: 3.9%
Age: 50 and over
Dec-Feb 2021: 4.0%
Age: 50 and over
Jan-Mar 2021: 3.9%
Age: 50 and over
Feb-Apr 2021: 3.7%
Age: 50 and over
Mar-May 2021: 3.7%
Age: 50 and over
Apr-Jun 2021: 3.5%
Age: 50 and over
May-Jul 2021: 3.3%
Age: 50 and over
Jun-Aug 2021: 3.2%
Age: 50 and over
Jul-Sep 2021: 3.3%
Age: 50 and over
Aug-Oct 2021: 3.3%
Age: 50 and over
Sep-Nov 2021: 3.2%
Age: 50 and over
Oct-Dec 2021: 3.0%
Age: 50 and over
Nov-Jan 2022: 2.8%
Age: 50 and over
Dec-Feb 2022: 2.6%
Age: 50 and over
Jan-Mar 2022: 2.5%
Age: 50 and over
Feb-Apr 2022: 2.7%
Age: 50 and over
Mar-May 2022: 2.6%

This example was made with config:

YAML
data: test.data.unemploymentByAge
columns:
  - name: decimal_year
    template: '{{ Date | strptime("-%b %Y") | decimalYear() }}'
legend:
  show: true
axis:
  x:
    title:
      label: Year
    grid:
      stroke-dasharray: 6 2
      stroke-width: 1
    ticks:
      - value: 2000
        grid: true
        label: '2000'
        tickSize: 5
      - value: 2002
        grid: true
        label: ''
      - value: 2004
        grid: true
        label: ''
      - value: 2006
        grid: true
        label: ''
      - value: 2008
        grid: true
        label: ''
      - value: 2010
        grid: true
        label: '2010'
        tickSize: 5
      - value: 2012
        grid: true
        label: ''
      - value: 2014
        grid: true
        label: ''
      - value: 2016
        grid: true
        label: ''
      - value: 2018
        grid: true
        label: ''
      - value: 2020
        grid: true
        label: '2020'
        tickSize: 5
    min: 2000
    max: 2022.5
  'y':
    min: 0
    max: 45
    title:
      label: Unemployment
    grid:
      stroke-width: 0.5
    ticks:
      - value: 0
        grid: true
        label: 0%
      - value: 5
        grid: true
        label: ''
      - value: 10
        grid: true
        label: 10%
      - value: 15
        grid: true
        label: ''
      - value: 20
        grid: true
        label: 20%
      - value: 25
        grid: true
        label: ''
      - value: 30
        grid: true
        label: 30%
      - value: 35
        grid: true
        label: ''
      - value: 40
        grid: true
        label: 40%
      - value: 45
        grid: true
        label: ''
    tick:
      size: 5
series:
  - title: 16-17
    x: decimal_year
    y: 16-17→rate (%)1
    colour: '#e52e36'
    tooltip: 'Age: 16-17<br />{{ Date }}: {{ 16-17→rate (%)1 | toFixed(1) }}%'
  - title: 18-24
    x: decimal_year
    y: 18-24→rate (%)1
    colour: '#f7ab3d'
    tooltip: 'Age: 18-24<br />{{ Date }}: {{ 18-24→rate (%)1 | toFixed(1) }}%'
  - title: 25-49
    x: decimal_year
    y: 25-49→rate (%)1
    colour: '#c7b200'
    tooltip: 'Age: 25-49<br />{{ Date }}: {{ 25-49→rate (%)1 | toFixed(1) }}%'
  - title: 50-64
    x: decimal_year
    y: 50 and over→rate (%)1
    colour: '#005776'
    tooltip: >-
      Age: 50 and over<br />{{ Date }}: {{ 50 and over→rate (%)1 | toFixed(1)
      }}%
JSON
{
	"data": "test.data.unemploymentByAge",
	"columns": [{
			"name": "decimal_year",
			"template": "{{ Date | strptime(\"-%b %Y\") | decimalYear() }}"
		}],
	"legend": {
		"show": true
	},
	"axis": {
		"x": {
			"title": {
				"label": "Year"
			},
			"grid": {
				"stroke-dasharray": "6 2",
				"stroke-width": 1
			},
			"ticks": [{
					"value": 2000,
					"grid": true,
					"label": "2000",
					"tickSize": 5
				},{
					"value": 2002,
					"grid": true,
					"label": ""
				},{
					"value": 2004,
					"grid": true,
					"label": ""
				},{
					"value": 2006,
					"grid": true,
					"label": ""
				},{
					"value": 2008,
					"grid": true,
					"label": ""
				},{
					"value": 2010,
					"grid": true,
					"label": "2010",
					"tickSize": 5
				},{
					"value": 2012,
					"grid": true,
					"label": ""
				},{
					"value": 2014,
					"grid": true,
					"label": ""
				},{
					"value": 2016,
					"grid": true,
					"label": ""
				},{
					"value": 2018,
					"grid": true,
					"label": ""
				},{
					"value": 2020,
					"grid": true,
					"label": "2020",
					"tickSize": 5
				}],
			"min": 2000,
			"max": 2022.5
		},
		"y": {
			"min": 0,
			"max": 45,
			"title": {
				"label": "Unemployment"
			},
			"grid": {
				"stroke-width": 0.5
			},
			"ticks": [{
					"value": 0,
					"grid": true,
					"label": "0%"
				},{
					"value": 5,
					"grid": true,
					"label": ""
				},{
					"value": 10,
					"grid": true,
					"label": "10%"
				},{
					"value": 15,
					"grid": true,
					"label": ""
				},{
					"value": 20,
					"grid": true,
					"label": "20%"
				},{
					"value": 25,
					"grid": true,
					"label": ""
				},{
					"value": 30,
					"grid": true,
					"label": "30%"
				},{
					"value": 35,
					"grid": true,
					"label": ""
				},{
					"value": 40,
					"grid": true,
					"label": "40%"
				},{
					"value": 45,
					"grid": true,
					"label": ""
				}],
			"tick": {
				"size": 5
			}
		}
	},
	"series": [{
			"title": "16-17",
			"x": "decimal_year",
			"y": "16-17→rate (%)1",
			"colour": "#e52e36",
			"tooltip": "Age: 16-17<br />{{ Date }}: {{ 16-17→rate (%)1 | toFixed(1) }}%"
		},{
			"title": "18-24",
			"x": "decimal_year",
			"y": "18-24→rate (%)1",
			"colour": "#f7ab3d",
			"tooltip": "Age: 18-24<br />{{ Date }}: {{ 18-24→rate (%)1 | toFixed(1) }}%"
		},{
			"title": "25-49",
			"x": "decimal_year",
			"y": "25-49→rate (%)1",
			"colour": "#c7b200",
			"tooltip": "Age: 25-49<br />{{ Date }}: {{ 25-49→rate (%)1 | toFixed(1) }}%"
		},{
			"title": "50-64",
			"x": "decimal_year",
			"y": "50 and over→rate (%)1",
			"colour": "#005776",
			"tooltip": "Age: 50 and over<br />{{ Date }}: {{ 50 and over→rate (%)1 | toFixed(1) }}%"
		}]
}

4. Category-based data§

Embeddable version

This example uses category-based data. Default colours are used as no colour is given for each series.

Series 3
Series 2
Series 1
ABCDEFGHIJ0100255075Series 1 A: 10Series 1 B: 20Series 1 C: 23Series 1 D: 47Series 1 E: 34Series 1 F: 55Series 1 G: 49Series 1 H: 20Series 1 I: 10Series 1 J: 5Series 2 A: 12Series 2 B: 22Series 2 C: 21Series 2 D: 45Series 2 E: 37Series 2 F: 57Series 2 G: 59Series 2 H: 30Series 2 I: 12Series 2 J: 2Series 3 A: 15Series 3 B: 32Series 3 C: 24Series 3 D: 35Series 3 E: 31Series 3 F: 52Series 3 G: 19Series 3 H: 10Series 3 I: 1Series 3 J: 30

This example was made with config:

YAML
legend:
  show: true
data:
  - category: A
    series1: 10
    series2: 12
    series3: 15
  - category: B
    series1: 20
    series2: 22
    series3: 32
  - category: C
    series1: 23
    series2: 21
    series3: 24
  - category: D
    series1: 47
    series2: 45
    series3: 35
  - category: E
    series1: 34
    series2: 37
    series3: 31
  - category: F
    series1: 55
    series2: 57
    series3: 52
  - category: G
    series1: 49
    series2: 59
    series3: 19
  - category: H
    series1: 20
    series2: 30
    series3: 10
  - category: I
    series1: 10
    series2: 12
    series3: 1
  - category: J
    series1: 5
    series2: 2
    series3: 30
axis:
  x:
    grid:
      show: true
    min: -0.5
    max: 9.5
    ticks:
      - value: 0
        label: A
      - value: 1
        label: B
      - value: 2
        label: C
      - value: 3
        label: D
      - value: 4
        label: E
      - value: 5
        label: F
      - value: 6
        label: G
      - value: 7
        label: H
      - value: 8
        label: I
      - value: 9
        label: J
  'y':
    grid:
      show: true
    tick:
      spacing: 25
    max: 100
series:
  - title: Series 1
    x: category
    y: series1
  - title: Series 2
    x: category
    y: series2
  - title: Series 3
    x: category
    y: series3
JSON
{
	"legend": {
		"show": true
	},
	"data": [{
			"category": "A",
			"series1": 10,
			"series2": 12,
			"series3": 15
		},{
			"category": "B",
			"series1": 20,
			"series2": 22,
			"series3": 32
		},{
			"category": "C",
			"series1": 23,
			"series2": 21,
			"series3": 24
		},{
			"category": "D",
			"series1": 47,
			"series2": 45,
			"series3": 35
		},{
			"category": "E",
			"series1": 34,
			"series2": 37,
			"series3": 31
		},{
			"category": "F",
			"series1": 55,
			"series2": 57,
			"series3": 52
		},{
			"category": "G",
			"series1": 49,
			"series2": 59,
			"series3": 19
		},{
			"category": "H",
			"series1": 20,
			"series2": 30,
			"series3": 10
		},{
			"category": "I",
			"series1": 10,
			"series2": 12,
			"series3": 1
		},{
			"category": "J",
			"series1": 5,
			"series2": 2,
			"series3": 30
		}],
	"axis": {
		"x": {
			"grid": {
				"show": true
			},
			"min": -0.5,
			"max": 9.5,
			"ticks": [{
					"value": 0,
					"label": "A"
				},{
					"value": 1,
					"label": "B"
				},{
					"value": 2,
					"label": "C"
				},{
					"value": 3,
					"label": "D"
				},{
					"value": 4,
					"label": "E"
				},{
					"value": 5,
					"label": "F"
				},{
					"value": 6,
					"label": "G"
				},{
					"value": 7,
					"label": "H"
				},{
					"value": 8,
					"label": "I"
				},{
					"value": 9,
					"label": "J"
				}]
		},
		"y": {
			"grid": {
				"show": true
			},
			"tick": {
				"spacing": 25
			},
			"max": 100
		}
	},
	"series": [{
			"title": "Series 1",
			"x": "category",
			"y": "series1"
		},{
			"title": "Series 2",
			"x": "category",
			"y": "series2"
		},{
			"title": "Series 3",
			"x": "category",
			"y": "series3"
		}]
}

5. Custom icons§

Embeddable version

Line markers can be defined using the points object on a series. Points can have a marker (one of circle, triangle, square, diamond, pentagon, hexagon, octagon, line, or cross), a size, and a rotation given by rotate (in degrees). We can also customise the line using stroke-width, stroke-dasharray and stroke-linecap.

Series 3
Series 2
Series 1
0.00.20.40.60.81.00100255075Series 1 0.1: 10Series 1 0.2: 20Series 1 0.3: 23Series 1 0.4: 47Series 1 0.5: 34Series 1 0.6: 55Series 1 0.7: 49Series 1 0.8: 20Series 1 0.9: 10Series 1 1: 5Series 2 0.1: 12Series 2 0.2: 22Series 2 0.3: 21Series 2 0.4: 45Series 2 0.5: 37Series 2 0.6: 57Series 2 0.7: 59Series 2 0.8: 30Series 2 0.9: 12Series 2 1: 2Series 3 0.1: 15Series 3 0.2: 32Series 3 0.3: 24Series 3 0.4: 35Series 3 0.5: 31Series 3 0.6: 52Series 3 0.7: 19Series 3 0.8: 10Series 3 0.9: 1Series 3 1: 30

This example was made with config:

YAML
legend:
  show: true
data:
  - value: 0.1
    series1: 10
    series2: 12
    series3: 15
  - value: 0.2
    series1: 20
    series2: 22
    series3: 32
  - value: 0.3
    series1: 23
    series2: 21
    series3: 24
  - value: 0.4
    series1: 47
    series2: 45
    series3: 35
  - value: 0.5
    series1: 34
    series2: 37
    series3: 31
  - value: 0.6
    series1: 55
    series2: 57
    series3: 52
  - value: 0.7
    series1: 49
    series2: 59
    series3: 19
  - value: 0.8
    series1: 20
    series2: 30
    series3: 10
  - value: 0.9
    series1: 10
    series2: 12
    series3: 1
  - value: 1
    series1: 5
    series2: 2
    series3: 30
axis:
  x:
    grid:
      show: true
    tick:
      spacing: 0.2
  'y':
    grid:
      show: true
    tick:
      spacing: 25
    max: 100
series:
  - title: Series 1
    x: value
    y: series1
    points:
      size: 8
  - title: Series 2
    x: value
    y: series2
    points:
      marker: cross
      rotate: 45
      size: 16
    line:
      stroke-dasharray: 0 12
  - title: Series 3
    x: value
    y: series3
    points:
      marker: triangle
      rotate: 180
      size: 32
    line:
      stroke-dasharray: 4 6
      stroke-width: 3
JSON
{
	"legend": {
		"show": true
	},
	"data": [{
			"value": 0.1,
			"series1": 10,
			"series2": 12,
			"series3": 15
		},{
			"value": 0.2,
			"series1": 20,
			"series2": 22,
			"series3": 32
		},{
			"value": 0.3,
			"series1": 23,
			"series2": 21,
			"series3": 24
		},{
			"value": 0.4,
			"series1": 47,
			"series2": 45,
			"series3": 35
		},{
			"value": 0.5,
			"series1": 34,
			"series2": 37,
			"series3": 31
		},{
			"value": 0.6,
			"series1": 55,
			"series2": 57,
			"series3": 52
		},{
			"value": 0.7,
			"series1": 49,
			"series2": 59,
			"series3": 19
		},{
			"value": 0.8,
			"series1": 20,
			"series2": 30,
			"series3": 10
		},{
			"value": 0.9,
			"series1": 10,
			"series2": 12,
			"series3": 1
		},{
			"value": 1,
			"series1": 5,
			"series2": 2,
			"series3": 30
		}],
	"axis": {
		"x": {
			"grid": {
				"show": true
			},
			"tick": {
				"spacing": 0.2
			}
		},
		"y": {
			"grid": {
				"show": true
			},
			"tick": {
				"spacing": 25
			},
			"max": 100
		}
	},
	"series": [{
			"title": "Series 1",
			"x": "value",
			"y": "series1",
			"points": {
				"size": 8
			}
		},{
			"title": "Series 2",
			"x": "value",
			"y": "series2",
			"points": {
				"marker": "cross",
				"rotate": 45,
				"size": 16
			},
			"line": {
				"stroke-dasharray": "0 12"
			}
		},{
			"title": "Series 3",
			"x": "value",
			"y": "series3",
			"points": {
				"marker": "triangle",
				"rotate": 180,
				"size": 32
			},
			"line": {
				"stroke-dasharray": "4 6",
				"stroke-width": 3
			}
		}]
}

6. Gaps in series Since v0.15.1§

Embeddable version

This is a test to show what happens if data is missing in a series. In this case series 1 is missing a point at x=0.5 and series 2 is missing values for x=0.7 and x=0.8.

Series 3
Series 2
Series 1
0.00.20.40.60.81.00100255075Series 1 0.1: 10Series 1 0.2: 20Series 1 0.3: 23Series 1 0.4: 47Series 1 0.6: 55Series 1 0.7: 49Series 1 0.8: 20Series 1 0.9: 10Series 1 1: 5Series 2 0.1: 12Series 2 0.2: 22Series 2 0.3: 21Series 2 0.4: 45Series 2 0.5: 37Series 2 0.6: 57Series 2 0.9: 12Series 2 1: 2Series 3 0.1: 15Series 3 0.2: 32Series 3 0.3: 24Series 3 0.4: 35Series 3 0.5: 31Series 3 0.6: 52Series 3 0.7: 19Series 3 0.8: 10Series 3 0.9: 1Series 3 1: 30

This example was made with config:

YAML
legend:
  show: true
data: test.data.scatter-chart-data
axis:
  x:
    grid:
      show: true
    tick:
      spacing: 0.2
  'y':
    grid:
      show: true
    tick:
      spacing: 25
    max: 100
series:
  - title: Series 1
    x: value
    y: Series 1
    points:
      size: 8
  - title: Series 2
    x: value
    y: Series 2
    points:
      marker: cross
      rotate: 45
      size: 16
    line:
      stroke-dasharray: 0 12
      curvature: 1
  - title: Series 3
    x: value
    y: Series 3
    points:
      marker: triangle
      rotate: 180
      size: 32
    line:
      stroke-dasharray: 4 6
      stroke-width: 3
JSON
{
	"legend": {
		"show": true
	},
	"data": "test.data.scatter-chart-data",
	"axis": {
		"x": {
			"grid": {
				"show": true
			},
			"tick": {
				"spacing": 0.2
			}
		},
		"y": {
			"grid": {
				"show": true
			},
			"tick": {
				"spacing": 25
			},
			"max": 100
		}
	},
	"series": [{
			"title": "Series 1",
			"x": "value",
			"y": "Series 1",
			"points": {
				"size": 8
			}
		},{
			"title": "Series 2",
			"x": "value",
			"y": "Series 2",
			"points": {
				"marker": "cross",
				"rotate": 45,
				"size": 16
			},
			"line": {
				"stroke-dasharray": "0 12",
				"curvature": 1
			}
		},{
			"title": "Series 3",
			"x": "value",
			"y": "Series 3",
			"points": {
				"marker": "triangle",
				"rotate": 180,
				"size": 32
			},
			"line": {
				"stroke-dasharray": "4 6",
				"stroke-width": 3
			}
		}]
}

7. Limiting a series to specific rows Since 0.16.5§

Embeddable version

Sometimes you may have a big, stacked, file where you may want to use some rows for one series and other rows for another. We can limit a particular series to only use certain rows by using the option where. In the example below we have a dataset relating to housing that has a column geography_name_x that contains English local authorities. We can create a series for just Leeds and another for just the City of London.

City of London
Leeds
200020052010201520202025Vacants per 1000 dwellings0100255075Leeds 2004: 51Leeds 2005: 44Leeds 2006: 47Leeds 2007: 44Leeds 2008: 45Leeds 2009: 45Leeds 2010: 43Leeds 2011: 42Leeds 2012: 40Leeds 2013: 35Leeds 2014: 32Leeds 2015: 30Leeds 2016: 28Leeds 2017: 30Leeds 2018: 30Leeds 2019: 28Leeds 2020: 30Leeds 2021: 33Leeds 2022: 33Leeds 2023: 33City of London 2004: 31City of London 2005: 23City of London 2006: 17City of London 2007: 23City of London 2008: 18City of London 2009: 13City of London 2010: 24City of London 2011: 16City of London 2012: 16City of London 2013: 19City of London 2014: 20City of London 2015: 14City of London 2016: 20City of London 2017: 40City of London 2018: 50City of London 2019: 46City of London 2020: 44City of London 2021: 38City of London 2022: 45City of London 2023: 41

This example was made with config:

YAML
legend:
  show: true
data: test.data.house-prices
axis:
  x:
    grid:
      show: true
    tick:
      spacing: 5
  'y':
    grid:
      show: true
    tick:
      spacing: 25
    title:
      label: Vacants per 1000 dwellings
series:
  - title: Leeds
    x: date
    y: vacants_per_thousand_dwellings
    where: '"geography_name_x"="Leeds"'
  - title: City of London
    x: date
    y: vacants_per_thousand_dwellings
    where: '"geography_name_x"="City of London"'
JSON
{
	"legend": {
		"show": true
	},
	"data": "test.data.house-prices",
	"axis": {
		"x": {
			"grid": {
				"show": true
			},
			"tick": {
				"spacing": 5
			}
		},
		"y": {
			"grid": {
				"show": true
			},
			"tick": {
				"spacing": 25
			},
			"title": {
				"label": "Vacants per 1000 dwellings"
			}
		}
	},
	"series": [{
			"title": "Leeds",
			"x": "date",
			"y": "vacants_per_thousand_dwellings",
			"where": "\"geography_name_x\"=\"Leeds\""
		},{
			"title": "City of London",
			"x": "date",
			"y": "vacants_per_thousand_dwellings",
			"where": "\"geography_name_x\"=\"City of London\""
		}]
}